
Oracle® Configurator
Implementation Guide

Release 11i

Part No. B13604-03

May 2005

This book provides explanations, descriptions, and
instructions for the administration tasks required to set up
and support development and deployment of a runtime
Oracle Configurator.

Oracle Configurator Implementation Guide, Release 11i

Part No. B13604-03

Copyright © 1999, 2005, Oracle. All rights reserved.

Primary Author: Tina Brand, Stephen Damiani, Mark Sawtelle, Harriet Shanzer

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

List of ExamplesList of Figures

Send Us Your Comments .. xxi

Preface ... xxiii

Intended Audience.. xxiii
Documentation Accessibility ... xxiii
Structure ... xxiv
Related Documents ... xxvi
Conventions ... xxvi
Product Support ... xxvii

Part I Introduction

1 Implementation Tasks

1.1 General Implementation Tasks ... 1-1
1.2 Database Tasks .. 1-2
1.2.1 Required Database Tasks.. 1-2
1.2.2 Optional Database Tasks .. 1-3
1.3 Integration Tasks... 1-3
1.3.1 Required Tasks for All Integrations .. 1-3
1.3.2 Optional Integration Tasks... 1-4
1.3.3 Tasks for Custom Integration .. 1-4
1.4 Model Development Tasks.. 1-4
1.4.1 Required Tasks for Model Development ... 1-4
1.4.2 Optional Tasks for Model Development.. 1-5
1.5 Deployment Tasks .. 1-6
1.5.1 Required Tasks for All Deployments.. 1-6
1.5.2 Optional Tasks for Deployment .. 1-6
1.5.3 Tasks for Custom Deployments .. 1-7

2 Configurator Architecture

2.1 Overview.. 2-1
2.2 Runtime Oracle Configurator ... 2-2
2.2.1 Access .. 2-2
2.2.1.1 Type of Host Application .. 2-3

iv

2.2.1.2 Login to Host Application... 2-3
2.2.1.3 Invocation of Oracle Configurator by Host Application .. 2-3
2.2.1.4 Incorporation of Oracle Configurator in the Host Application’s UI..................... 2-4
2.2.2 Oracle Configurator Security on Publicly Accessible Web Servers 2-4
2.2.3 Runtime UI Types.. 2-4
2.2.4 Oracle Configurator Servlet .. 2-4
2.2.4.1 UI Server .. 2-5
2.2.4.2 Configuration Interface Object (CIO) .. 2-5
2.2.4.3 Oracle Configurator Engine .. 2-5
2.3 Oracle CZ Schema... 2-6
2.4 Oracle Configurator Developer ... 2-6
2.4.1 Access .. 2-6
2.4.2 Types of Configuration Models... 2-6
2.4.3 Unit Testing .. 2-7
2.5 Multi-Tier Architecture .. 2-7
2.5.1 Runtime Oracle Configurator .. 2-7
2.5.2 Oracle Configurator Developer Three Tiers .. 2-8

Part II Data

3 Database Instances

3.1 Database Uses.. 3-1
3.2 Multiple Database Instances.. 3-2
3.2.1 Reasons for Multiple Database Instances... 3-2
3.2.1.1 Import Source and Target ... 3-3
3.2.1.2 Publication Source and Target.. 3-3
3.2.1.3 Decommissioning a Database Instance ... 3-4
3.2.1.4 Migration Source and Target .. 3-4
3.2.1.5 BOM Synchronization Source and Target .. 3-4
3.2.2 Linking Multiple Database Instances ... 3-4
3.2.3 Instance and Host System Names ... 3-4
3.3 Model Development ... 3-5
3.4 Maintenance... 3-5
3.5 Production.. 3-6
3.5.1 System Testing ... 3-6
3.5.2 Deploying a Model .. 3-6

4 The CZ Schema

4.1 Characteristics of the Oracle CZ Schema... 4-1
4.1.1 Online Tables and Integration Tables... 4-1
4.1.2 CZ Subschemas .. 4-1
4.1.3 Public Synonyms.. 4-2
4.1.4 Schema Customization.. 4-2
4.2 Import Tables... 4-2
4.2.1 Import Control Fields.. 4-3
4.2.2 Online Data Fields ... 4-4

v

4.2.3 Surrogate Key Fields ... 4-4
4.2.4 Dependencies Among Import Tables ... 4-5
4.3 Control Tables ... 4-6
4.4 CZ_DB_SETTINGS Table .. 4-7
4.4.1 Accessing the CZ_DB_SETTINGS Table .. 4-7
4.4.2 Organization of the CZ_DB_SETTINGS Table.. 4-7
4.4.3 CZ_DB_SETTINGS Parameters ... 4-8
4.4.3.1 AltBatchValidateURL... 4-9
4.4.3.2 BadItemPropertyValue .. 4-9
4.4.3.3 BatchSize ... 4-10
4.4.3.4 BOM_REVISION ... 4-10
4.4.3.5 CommitSize .. 4-10
4.4.3.6 DISPLAY_INSTANCE_NAME ... 4-10
4.4.3.7 FREEZE_REVISION.. 4-11
4.4.3.8 GenerateGatedCombo .. 4-11
4.4.3.9 GenerateUpdatedOnly.. 4-11
4.4.3.10 GenStatisticsBOM.. 4-11
4.4.3.11 GenStatisticsCZ.. 4-11
4.4.3.12 MAJOR_VERSION .. 4-11
4.4.3.13 MaximumErrors... 4-11
4.4.3.14 MemoryBulkSize ... 4-12
4.4.3.15 MINOR_VERSION.. 4-12
4.4.3.16 MULTISESSION .. 4-12
4.4.3.17 OracleSequenceIncr... 4-12
4.4.3.18 PsNodeName ... 4-12
4.4.3.19 PublicationLogging ... 4-13
4.4.3.20 PublishingCopyRules ... 4-13
4.4.3.21 RefPartNbr.. 4-13
4.4.3.22 ResolvePropertyDataType ... 4-14
4.4.3.23 RestoredConfigDefaultModelLookupDate ... 4-14
4.4.3.24 Revision Date and User .. 4-15
4.4.3.25 RUN_BILL_EXPLODER... 4-15
4.4.3.26 SuppressSuccessMessage ... 4-15
4.4.3.27 TimeImport... 4-16
4.4.3.28 UI_NODE_NAME_CONCAT_CHARS ... 4-16
4.4.3.29 UseLocalTableInExtractionViews ... 4-16
4.4.3.30 UtlHttpTransferTimeout .. 4-16

5 Populating the CZ Schema

5.1 Overview.. 5-1
5.1.1 Types of Data Stored in the CZ Schema During Development and Runtime 5-1
5.1.2 Means of Populating the CZ Schema.. 5-2
5.1.3 CZ_IMP Tables... 5-3
5.2 Standard Import .. 5-3
5.2.1 Inventory and BOM Data That Can Be Imported... 5-4
5.2.2 Overall Standard Import Procedure ... 5-4
5.2.3 Determining the Import Data Source Instance and the Target Instance 5-5

vi

5.2.4 Preparing the Data for Import ... 5-5
5.2.4.1 Defining Inventory Items for Configuration .. 5-6
5.2.4.2 Creating BOM Models for Configuration ... 5-7
5.2.5 Defining and Enabling a Server for Import ... 5-7
5.2.6 Exploding BOM Models in Oracle Applications... 5-8
5.2.6.1 Exploding a BOM Model in Release 11i .. 5-8
5.2.6.2 Exploding a BOM Model in Release 10.7 or 11.0 ... 5-8
5.2.7 Controlling the Data for Import .. 5-8
5.2.7.1 Importing Data Into Specific Tables .. 5-9
5.2.7.2 Importing Data from Specific Fields.. 5-9
5.2.7.3 Populating Import Tables.. 5-9
5.2.7.4 Modifying EXPLOSION_TYPE .. 5-9
5.2.7.5 Identifying a BOM Model for Import ... 5-10
5.2.7.6 Importing Decimal or Integer Quantities... 5-10
5.2.7.7 Importing Minimum and Maximum Instances .. 5-11
5.2.8 Importing the Data ... 5-11
5.2.9 Verifying the Data Import ... 5-12
5.2.10 Refreshing Imported Data ... 5-12
5.2.10.1 Refreshing Imported Data Recommendations ... 5-13
5.2.10.2 Refreshing Procedures ... 5-13
5.2.11 Importing a BOM Model That Contains Other BOM Models.................................... 5-13
5.2.12 Refreshing a BOM Model That Contains Other BOM Models 5-14
5.2.12.1 BOM Model References Have Changed... 5-14
5.2.12.2 BOM Models Referenced by Previously Imported BOM Model Have Changed

5-15
5.2.13 BOM Model with a Common Bill... 5-16
5.3 Rule Import ... 5-16
5.3.1 Rule Import Procedure... 5-16
5.3.2 Populating CZ_IMP_RULES... 5-17
5.3.3 Populating CZ_IMP_LOCALIZED_TEXTS ... 5-19
5.3.4 Rule Import Tables ... 5-20
5.3.5 Stages of Rule Import .. 5-21
5.3.6 Rule Validation ... 5-21
5.4 Custom Import ... 5-21
5.4.1 Overview of Custom Data Import ... 5-22
5.4.2 Identifying Data for a Custom Data Import .. 5-23
5.4.3 Custom Import Procedure... 5-23
5.4.4 Required ASCII File Format for Custom Import ... 5-24

6 Migrating Data

6.1 Overview.. 6-1
6.2 Migrating Data from Another CZ Schema.. 6-1

7 Synchronizing Data

7.1 Overview.. 7-1
7.2 Synchronizing BOM Model Data ... 7-1
7.2.1 The BOM Model Synchronization Process .. 7-2

vii

7.2.2 Checking BOM and Model Similarity .. 7-2
7.2.3 Criteria for BOM Model Similarity ... 7-2
7.2.4 Result of Synchronizing BOM Models ... 7-4
7.3 Synchronizing Publication Data ... 7-5
7.3.1 Synchronizing Publication Data after a Database Instance is Cloned 7-5
7.3.2 Example of Synchronizing Publication Data ... 7-6
7.3.2.1 CZ_SERVERS Table ... 7-6
7.3.2.2 CZ_MODEL_PUBLICATIONS Table.. 7-6
7.3.2.3 Example Publication Data Before Cloning ... 7-6
7.3.2.4 Example of Synchronizing Publication Data on a Cloned Target 7-7
7.3.2.5 Example of Synchronizing Publication Data on a Cloned Source 7-9

8 CZ Schema Maintenance

8.1 Overview.. 8-1
8.2 Refreshing or Updating the Production CZ Schema ... 8-1
8.3 Purging Configurator Tables... 8-1
8.3.1 Purge Configurator Tables ... 8-2
8.3.2 Purge Configurator Import Tables.. 8-2
8.3.3 Purge To Date Configurator Import Tables... 8-2
8.3.4 Purge To Run ID Configurator Import Tables .. 8-2
8.4 Redoing Sequences ... 8-3

Part III Integration

9 Session Initialization

9.1 Overview.. 9-2
9.1.1 Definition of Session Initialization .. 9-2
9.1.2 Responsibilities of the Host Application.. 9-2
9.2 Setting Parameters .. 9-3
9.2.1 Parameter Syntax ... 9-3
9.2.1.1 Omitting Parameters or Values .. 9-4
9.2.2 Typical Parameter Values... 9-4
9.2.3 Minimal Test of Initialization... 9-5
9.2.4 Parameter Validation .. 9-6
9.2.5 Logging of Parameter Use .. 9-6
9.3 Initialization Parameter Types.. 9-6
9.3.1 Login Parameters ... 9-7
9.3.2 Model Identification Parameters ... 9-8
9.3.2.1 Identifying the User Interface Definition .. 9-8
9.3.2.2 Identifying the Configuration... 9-8
9.3.2.3 Identifying the Model .. 9-9
9.3.3 Model Publication Identification Parameters ... 9-10
9.3.4 Support of Multiple Instantiation... 9-10
9.3.5 Return URL Parameter... 9-10
9.3.6 Pricing Parameters.. 9-11
9.3.7 ATP Parameters .. 9-11

viii

9.3.8 Arbitrary Parameters.. 9-12
9.3.9 Parameter Compatibility ... 9-12
9.4 Initialization Parameter Descriptions ... 9-13

10 Session Termination

10.1 Overview... 10-1
10.1.1 Relationship to Initialization Message... 10-1
10.1.2 Definition of Session Termination.. 10-1
10.2 XML Message Structure .. 10-2
10.3 Submission .. 10-3
10.3.1 Configuration Status .. 10-4
10.3.1.1 Subelements for Configuration Status.. 10-4
10.3.2 Configuration Outputs... 10-6
10.3.2.1 Subelements for Configuration Outputs.. 10-7
10.3.3 Configuration Messages .. 10-8
10.3.3.1 Subelements for Configuration Messages.. 10-8
10.4 Cancellation .. 10-9
10.5 Error ... 10-9
10.6 The Return URL ... 10-10
10.6.1 Specifying the Return URL.. 10-10
10.6.2 Implementing the Return URL ... 10-10

11 Batch Validation

11.1 Overview... 11-1
11.2 Passing the Batch Validation Message.. 11-1
11.3 Calling the CZ_CF_API.VALIDATE Procedure ... 11-3
11.4 Batch Validation Failure.. 11-8
11.5 Skipping Batch Validation .. 11-8
11.5.1 PL/SQL Callback.. 11-9
11.5.2 PL/SQL Callback and Models that use Configurator Extensions........................... 11-10

12 Custom Integration

12.1 General Directory Structure ... 12-1
12.2 Files for the Servlet Directory... 12-2
12.3 Files for the HTML Directory... 12-2
12.4 Files for the Media Directory.. 12-2

13 Pricing and ATP in Oracle Configurator

13.1 Overview... 13-1
13.2 Runtime Oracle Configurator Pricing Architecture.. 13-1
13.2.1 Pricing Callback Interface Package ... 13-2
13.2.2 Pricing Callback Interface ... 13-3
13.2.2.1 Use of the Database in the Price Multiple Items Procedures 13-4
13.2.2.2 Examples of the Pricing Callback Interface ... 13-5
13.2.3 ATP Callback Interface .. 13-6
13.2.3.1 Use of the Database with the ATP Callback Interface.. 13-6

ix

13.2.3.2 Examples of the ATP Callback Interface .. 13-7
13.3 Runtime Pricing Behavior... 13-7
13.4 Integration of Pricing and ATP with Oracle Configurator .. 13-7
13.4.1 Database Compatibility ... 13-8
13.4.2 Initialization Parameters.. 13-9
13.5 Controlling Pricing and ATP in a Runtime Oracle Configurator 13-10
13.5.1 Displaying Prices and ATP Information ... 13-10
13.5.2 Updating Prices... 13-10
13.5.3 Examples of Controlling Pricing .. 13-10
13.5.3.1 Example: List Prices Only... 13-11
13.5.3.2 Example: Selling Prices Only ... 13-11

14 Multiple Language Support

14.1 Introduction .. 14-1
14.2 Data Import... 14-2
14.2.1 New Models .. 14-2
14.2.2 Existing Models... 14-2
14.3 Installed Languages in Multiple Server Environments.. 14-2
14.4 Deploying a User Interface that Supports MLS... 14-2
14.5 Translating Data in CZ_LOCALIZED_TEXTS .. 14-3
14.6 Translating XML Documents ... 14-4

Part IV Configuration Model

15 Controlling the Development Environment

15.1 Setting up Oracle Configurator Developer .. 15-1
15.2 Setting up Access to Configurator Developer ... 15-1
15.3 Oracle Configurator Developer ... 15-2
15.3.1 Model Development... 15-2
15.3.2 Runtime Testing.. 15-3

16 Publishing Configuration Models

16.1 Planning Publications.. 16-1
16.1.1 Designing A Project .. 16-2
16.1.2 Preventing Publication Access Errors.. 16-2
16.2 How Host Applications Select a Published Model ... 16-2
16.2.1 Example: How a Usage Affects Model Structure, Rules, and Model Publications at

Runtime .. 16-3
16.3 Defining a Publication... 16-4
16.3.1 Source and Remote Publications .. 16-4
16.3.2 Tables Used in Publishing ... 16-4
16.3.3 Publication Details.. 16-5
16.3.3.1 Model .. 16-5
16.3.3.2 Product ID .. 16-5
16.3.3.3 User Interface ... 16-6
16.3.3.4 Target Database Instance.. 16-6

x

16.3.3.5 Mode.. 16-6
16.3.4 Publication Applicability Parameters .. 16-6
16.3.4.1 Applications ... 16-7
16.3.4.2 Languages... 16-7
16.3.4.3 Usages ... 16-7
16.3.4.4 Date Range.. 16-7
16.4 Publishing a Configuration Model.. 16-8
16.4.1 Publication Profile Options ... 16-9
16.4.2 Publishing and Model References.. 16-9
16.4.3 Copying User Interface Data... 16-9
16.4.4 Copying Model Rules... 16-10
16.4.5 Checking BOM Model and Configuration Model Similarity 16-10
16.5 Maintaining Publications.. 16-10
16.5.1 Publication Status ... 16-11
16.5.2 Editing Publications ... 16-12
16.5.3 Disabling, Deleting, and Re-enabling Publications ... 16-12
16.5.4 Republishing ... 16-13
16.5.5 Determining Publishing Information .. 16-13
16.5.6 Retrieving Orders from Previously Published Models... 16-14
16.5.7 Synchronizing Publication Data ... 16-14
16.5.8 Example of Maintaining Publications ... 16-14

17 Programmatic Tools for Development

17.1 Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages 17-1
17.1.1 Purpose of the Packages .. 17-1
17.1.2 Overview of Procedures and Functions .. 17-1
17.1.3 Installation of the Packages ... 17-2
17.1.4 References for Working with PL/SQL Procedures and Functions 17-3
17.2 Choosing the Right Tool for the Job.. 17-3
17.2.1 Establishing Session Identity .. 17-3
17.2.2 Setting Configuration Dates.. 17-3
17.2.3 Validating Configurations... 17-4
17.2.4 Verifying Configurations... 17-4
17.2.5 Copying and Deleting Configurations .. 17-4
17.2.6 Working with Common Bills .. 17-4
17.2.7 Identifying Publications... 17-4
17.2.7.1 Functions for Identifying Publications ... 17-4
17.2.7.2 Applicability Parameters.. 17-5
17.2.7.3 List Parameters... 17-6
17.3 Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages 17-6
17.3.1 Custom Data Types .. 17-6
17.3.2 Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages

17-7

COMMON_BILL_FOR_ITEM.. 17-9

CONFIG_MODEL_FOR_ITEM.. 17-10

CONFIG_MODELS_FOR_ITEMS ... 17-12

CONFIG_MODEL_FOR_PRODUCT.. 17-14

xi

CONFIG_MODELS_FOR_PRODUCTS.. 17-16

CONFIG_UI_FOR_ITEM .. 17-18

CONFIG_UI_FOR_ITEM_LF ... 17-20

CONFIG_UI_FOR_PRODUCT .. 17-22

CONFIG_UIS_FOR_ITEMS.. 17-24

CONFIG_UIS_FOR_PRODUCTS .. 17-26

COPY_CONFIGURATION .. 17-28

CZ_CONFIG_API_PUB.COPY_CONFIGURATION ... 17-30

COPY_CONFIGURATION_AUTO .. 17-32

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO ... 17-34

DEFAULT_NEW_CFG_DATES .. 17-36

DEFAULT_RESTORED_CFG_DATES ... 17-37

DELETE_CONFIGURATION .. 17-39

ICX_SESSION_TICKET... 17-41

MODEL_FOR_ITEM ... 17-42

MODEL_FOR_PUBLICATION_ID ... 17-44

PUBLICATION_FOR_ITEM .. 17-45

PUBLICATION_FOR_PRODUCT... 17-47

PUBLICATION_FOR_SAVED_CONFIG... 17-49

UI_FOR_ITEM.. 17-51

UI_FOR_PUBLICATION_ID.. 17-53

VALIDATE.. 17-54

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION.. 17-56

18 Programmatic Tools for Maintenance

18.1 Overview of the CZ_modelOperations_pub Package.. 18-1
18.1.1 Purpose of the Package .. 18-1
18.1.2 Installation of the Package... 18-1
18.1.3 References for Working with PL/SQL Procedures and Functions 18-1
18.2 Choosing the Right Tool for the Job.. 18-2
18.3 Queries to Support the CZ_modelOperations_pub Package .. 18-2
18.3.1 Querying for Model and Folder IDs .. 18-2
18.3.2 Querying for User Interface IDs ... 18-4
18.3.3 Querying for Referenced User Interface IDs .. 18-4
18.3.4 Querying for Populators.. 18-5
18.3.5 Querying for Error and Warning Information ... 18-5
18.4 Reference for the CZ_modelOperations_pub Package .. 18-6
18.4.1 Custom Data Types .. 18-6
18.4.2 API Version Numbers .. 18-6
18.4.2.1 Format of API Version Numbers .. 18-6
18.4.2.2 Current API Version Number for This Package ... 18-7
18.4.2.3 Checking for Incompatible API Calls ... 18-7
18.4.3 Procedures and Functions in the CZ_modelOperations_pub Package 18-7

xii

CREATE_RP_FOLDER ... 18-9

CREATE_UI .. 18-11

CREATE_JRAD_UI.. 18-13

DEEP_MODEL_COPY .. 18-15

EXECUTE_POPULATOR ... 18-17

FORCE_UNLOCK_MODEL .. 18-18

FORCE_UNLOCK_TEMPLATE.. 18-20

GENERATE_LOGIC.. 18-21

IMPORT_SINGLE_BILL ... 18-23

IMPORT_GENERIC... 18-24

PUBLISH_MODEL .. 18-26

REFRESH_SINGLE_MODEL... 18-27

REFRESH_UI .. 18-28

REFRESH_JRAD_UI.. 18-29

REPOPULATE.. 18-30

REPUBLISH_MODEL ... 18-31

RP_FOLDER_EXISTS .. 18-33

Part V Runtime Configurator

19 User Interface Deployment

19.1 Calling an Embedded Oracle Configurator .. 19-1
19.1.1 Generic Configurator User Interfaces .. 19-2
19.1.1.1 Criteria for Launching a Generic Configurator User Interface........................... 19-2
19.1.1.2 Generic Configurator UI Types ... 19-2
19.1.1.3 Setting Up a Generic Configurator User Interface.. 19-3
19.1.1.4 Generic Configurator User Interfaces: Additional Features and Limitations .. 19-3
19.1.2 Keyboard Access in the Runtime Configurator ... 19-4

20 Deployment Considerations

20.1 Deployment Strategies .. 20-1
20.2 Architectural Considerations ... 20-1
20.3 Server Considerations ... 20-2
20.3.1 Connection Pooling .. 20-3
20.4 Establishing End User Access .. 20-3
20.5 Determining the Runtime User Interface ... 20-3
20.6 Load Balancing and Secure Sockets Layer ... 20-4
20.7 Network Considerations... 20-4
20.7.1 Firewalls and Timeouts.. 20-5
20.7.2 Router Timeouts.. 20-5
20.7.3 Miscellaneous Issues .. 20-5
20.8 Security Considerations .. 20-6
20.8.1 Internet User Access .. 20-6
20.8.2 Additional Security Precautions... 20-7

xiii

20.9 Multiple Language Support Considerations ... 20-7
20.10 Performance Considerations .. 20-7

21 Managing Configurations

21.1 About Configurations.. 21-1
21.1.1 Saving a Configuration .. 21-2
21.2 Configuration Identity .. 21-2
21.3 Host Applications and Oracle Configurator.. 21-2
21.4 Batch Validation of a Configured Item... 21-3
21.5 Reconfiguring a Configured Item.. 21-4
21.6 Copying a Host Application’s Entity .. 21-5
21.7 Passing a Saved Configuration to Another Host Application .. 21-5
21.8 Deleting a Host Application Entity ... 21-5

Part VI Appendices

A Terminology

B Common Tasks

B.1 Running Configurator Concurrent Programs ... B-1
B.2 Connecting to a Database Instance.. B-2
B.3 Verifying CZ Schema Version.. B-3
B.4 Server Administration... B-3
B.5 Viewing Status of Configurator Concurrent Programs Requests....................................... B-4
B.6 Viewing Log Files .. B-4
B.7 Checking BOM Model and Configuration Model Similarity .. B-4

C Concurrent Programs

C.1 Configurator Administration Concurrent Programs.. C-1
C.1.1 View Configurator Parameters .. C-2
C.1.2 Modify Configurator Parameters ... C-2
C.1.3 Purge Configurator Tables .. C-3
C.1.4 Purge Configurator Import Tables... C-4
C.1.5 Purge To Date Configurator Import Tables.. C-4
C.1.6 Purge To Run ID Configurator Import Tables ... C-5
C.2 Server Administration Concurrent Programs ... C-5
C.2.1 Add Application to Publication Applicability List.. C-6
C.2.2 Define Remote Server... C-6
C.2.3 Enable Remote Server .. C-7
C.2.4 View Servers .. C-8
C.2.5 Modify Server Definition... C-8
C.3 Configuration Model Publication Concurrent Programs .. C-9
C.3.1 Process Pending Publications ... C-10
C.3.2 Process a Single Publication .. C-11
C.4 Populate and Refresh Configuration Models Concurrent Programs............................... C-11

xiv

C.4.1 Populate Configuration Models ... C-12
C.4.1.1 Populate Configuration Models Concurrent Program Error Messages C-13
C.4.2 Refresh a Single Configuration Model .. C-13
C.4.3 Refresh All Imported Configuration Models ... C-14
C.4.4 Disable/Enable Refresh of a Configuration Model ... C-15
C.4.5 Import Configuration Rules .. C-15
C.5 Model Synchronization Concurrent Programs.. C-17
C.5.1 Check Model/Bill Similarity ... C-17
C.5.2 Check All Models/Bills Similarity ... C-18
C.5.3 Synchronize All Models... C-18
C.5.4 Model/Bill Similarity Check Report.. C-19
C.6 Execute Populators in Model Concurrent Program.. C-20
C.7 Migration Concurrent Programs ... C-20
C.7.1 Setup Configurator Data Migration... C-20
C.7.2 Migrate Configurator Data.. C-21
C.8 Migrate Functional Companions ... C-22
C.8.1 Migrate All Functional Companions ... C-22
C.8.2 Migrate Functional Companions for a Single Model .. C-23
C.9 Publication Synchronization Concurrent Programs... C-24
C.9.1 Synchronize Cloned Target Data.. C-24
C.9.2 Synchronize Cloned Source Data ... C-25
C.9.3 Select Tables to be Imported ... C-26
C.9.4 Show Tables to be Imported.. C-27
C.10 View Concurrent Program ... C-27

D CZ Subschemas

D.1 Oracle Configurator Subschemas .. D-1
D.1.1 ADMN Administrative Tables.. D-1
D.1.2 CNFG Configuration Tables ... D-1
D.1.3 ITEM Item-Master Tables .. D-1
D.1.4 LCE Logic for Configuration Tables .. D-2
D.1.5 PB Publication Tables... D-2
D.1.6 PRC Pricing Tables ... D-2
D.1.7 PROJ Project Structure Tables... D-2
D.1.8 RP Repository Tables ... D-3
D.1.9 RULE Rule Tables ... D-5
D.1.10 TXT - Text Tables .. D-6
D.1.11 TYP - Data Typing .. D-6
D.1.12 UI User Interface Tables... D-6
D.1.13 XFR Transfer Specifications and Control Tables.. D-7

E Code Examples

E.1 Pricing and ATP Callback Procedures.. E-1
E.2 Implementing a Return URL Servlet... E-2

xv

Glossary

Index

xvi

List of Examples

4–1 Setting a value in the CZ_XFR_FIELDS Table.. 4-7
4–2 Adding AltBatchValidateURL to CZ_DB_SETTINGS .. 4-9
4–3 Adding SuppressSuccessMessage to CZ_DB_SETTINGS ... 4-15
4–4 Adding UtlHttpTransferTimeout to CZ_DB_SETTINGS .. 4-16
5–1 Importing a BOM Model that Contains Other BOM Models .. 5-14
5–2 Data Transfer File Format... 5-24
9–1 Syntax of initialization message in HTML context .. 9-3
9–2 Basic XML initialization parameters .. 9-5
9–3 Minimal HTML for invoking the Runtime Oracle Configurator... 9-5
9–4 HTML for Invoking the Runtime Oracle Configurator with Return URL 9-10
10–1 Structure of Termination Message .. 10-2
10–2 Configuration Outputs in the Termination Message.. 10-6
10–3 Configuration Messages in the Termination Message ... 10-8
10–4 Cancellation in the Termination Message .. 10-9
10–5 Error Information in the Termination Message... 10-9
10–6 Return URL in the Initialization Message .. 10-10
10–7 Obtaining Values from Termination Message... 10-11
10–8 HTML Output Produced from Termination Message.. 10-11
11–1 Example of Batch Validation Message.. 11-2
11–2 Calling the CZ_CF_API.VALIDATE Procedure in a Program ... 11-3
11–3 Calling the CZ_CF_API.VALIDATE Procedure in a Script... 11-4
11–4 Specification of the PL/SQL Callback Function.. 11-9
13–1 Pricing Callback Interface ... 13-5
13–2 ATP Callback Interface.. 13-7
13–3 Initialization Message Using 11i Pricing and ATP Parameters... 13-9
16–1 Data created when a configuration model is published .. 16-8
16–2 Publishing Error when Checking BOM Model and Configuration Model 16-10
16–3 Query for UI_DEF_ID ... 16-13
17–1 Using the UI_FOR_PUBLICATION_ID Function... 17-53
18–1 Query for Models and Folders ... 18-3
18–2 Query for User Interface IDs .. 18-4
18–3 Query for Referenced DHTML and Java Applet User Interface IDs................................ 18-4
18–4 Query for Populators... 18-5
18–5 Query for Error and Warning Information .. 18-6
18–6 Using the GENERATE_LOGIC Procedure .. 18-21
C–1 Importing Data into a Specific Table... C-26
C–2 Show Tables to be Imported... C-27
C–3 Return from the Show Tables to be Imported Concurrent Program................................ C-27
E–1 Example of Multiple-item Callback Pricing Procedure.. E-2
E–2 Example of Callback ATP Procedure.. E-2
E–3 Example Return URL Servlet (Checkout.java) .. E-3

xvii

List of Figures

2–1 Four tier Architectural Overview of a Runtime Oracle Configurator................................. 2-8
2–2 Three tier Architectural Overview of a Runtime Oracle Configurator............................... 2-8
2–3 Three tier Architectural Overview of Oracle Configurator Developer............................... 2-9
3–1 Single Database Environment ... 3-2
3–2 Two Database Environments .. 3-3
5–1 Data Flow in the Import Process... 5-3
5–2 Initial Import of BOM Model with Submodels ... 5-14
5–3 Populate and Refresh Modified BOM Model ... 5-15
5–4 Import a New BOM Model with References to Existing BOM Models 5-15
5–5 Comparison of Custom and Standard Data Import ... 5-22
7–1 Original Publication.. 7-7
7–2 Publication After Cloning.. 7-8
7–3 Publication After Synchronization ... 7-8
7–4 Publication Before Cloning the Source Database .. 7-10
7–5 Source Server B is Cloned from Source Server A.. 7-11
13–1 Runtime Oracle Configurator Pricing Architecture.. 13-3
15–1 Developer Environment.. 15-3
16–1 Illustration of a Publication Record Mapping ... 16-9
16–2 Example of the Publication Process .. 16-11
16–3 Maintaining Publications.. 16-15

xviii

List of Tables

4–1 Import Control Fields .. 4-3
4–2 Dependencies Among CZ Schema Import Tables .. 4-5
4–3 Settings in CZ_DB_SETTINGS Table.. 4-8
4–4 Valid Values for the BadItemPropertyValue Setting... 4-10
4–5 ResolvePropertyDataType Setting ... 4-14
5–1 Tables for Importing Rules .. 5-20
7–1 Fields That Must Be Synchronized.. 7-3
7–2 Example of Missing Source Publication ... 7-9
7–3 CZ_SERVERS Entries on Source A Before Cloning ... 7-10
7–4 CZ_SERVERS Entries on Target C Before Cloning.. 7-10
7–5 CZ_SERVERS Entries on Server B After Synchronization.. 7-11
7–6 CZ_SERVERS Entries on Target C After Publishing a Model from Source B................ 7-11
9–1 Explanation of initialization parameters in Example 9–2 .. 9-5
9–2 Types of Initialization Parameters... 9-6
9–3 Initialization Parameters Required for Login .. 9-7
9–4 Model Identification Parameters ... 9-8
9–5 Initialization Parameters for Publishing Applicability ... 9-10
9–6 Initialization Parameters for Oracle Configurator ... 9-13
9–7 Date and Time Format for config_creation_date Parameter .. 9-16
9–8 Effects of Contributions to Model Quantity.. 9-20
10–1 Termination conditions .. 10-2
10–2 Values for the Termination Message Element <bom_item_type> 10-7
11–1 Elements of the Batch Validation Message ... 11-2
11–2 PL/SQL Callback Arguments ... 11-10
12–1 General Structure of Directories for Oracle Configurator .. 12-1
12–2 Files for the Servlet Directory.. 12-2
13–1 Price Multiple Items Procedure Parameters ... 13-3
13–2 Price Multiple Items MLS Procedure Parameters .. 13-3
13–3 CZ_PRICING_STRUCTURES Interface Table.. 13-4
13–4 ATP Procedure Parameters ... 13-6
13–5 Parameters for displaying pricing information.. 13-8
13–6 List Price Property Settings ... 13-11
13–7 Selling Price Property Settings .. 13-11
15–1 The Predefined Configurator Developer Responsibilities .. 15-2
16–1 Publication Status and Valid Operations .. 16-11
17–1 Overview of Procedures and Functions in the Package CZ_CF_API 17-2
17–2 References for Working with PL/SQL Procedures and Functions 17-3
17–3 Applicability Parameters for Publication Searches.. 17-5
17–4 Custom Data Types in the Package CZ_CF_API ... 17-7
17–5 Procedures and Functions in the Packages CZ_CF_API and CZ_CONFIG_API_PUB 17-7
17–6 Parameters for the COMMON_BILL_FOR_ITEM Procedure.. 17-9
17–7 Parameters for the CONFIG_MODEL_FOR_ITEM Function .. 17-10
17–8 Parameters for the CONFIG_MODELS_FOR_ITEMS Function 17-12
17–9 Parameters for the CONFIG_MODEL_FOR_PRODUCT Function............................... 17-14
17–10 Parameters for the CONFIG_MODELS_FOR_PRODUCTS Function 17-16
17–11 Parameters for the CONFIG_UI_FOR_ITEM Function... 17-18
17–12 Parameters for the CONFIG_UI_FOR_ITEM_LF Function .. 17-20
17–13 Parameters for the CONFIG_UI_FOR_PRODUCT Function ... 17-22
17–14 Parameters for the CONFIG_UIS_FOR_ITEMS Function... 17-24
17–15 Parameters for the CONFIG_UIS_FOR_PRODUCTS Function..................................... 17-26
17–16 Parameters for the COPY_CONFIGURATION Procedure... 17-29
17–17 Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION Procedure . 17-31
17–18 Parameters for the COPY_CONFIGURATION_AUTO Procedure............................... 17-33

xix

17–19 Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO Procedure
17-34

17–20 Parameters for the DEFAULT_NEW_CFG_DATES Procedure..................................... 17-36
17–21 Parameters for the DEFAULT_RESTORED_CFG_DATES Procedure 17-37
17–22 Parameters for the DELETE_CONFIGURATION Procedure .. 17-39
17–23 Parameters for the MODEL_FOR_ITEM Function .. 17-42
17–24 Parameters for the MODEL_FOR_PUBLICATION_ID Function.................................. 17-44
17–25 Parameters for the PUBLICATION_FOR_ITEM Function ... 17-45
17–26 Parameters for the PUBLICATION_FOR_PRODUCT Function 17-47
17–27 Parameters for the PUBLICATION_FOR_SAVED_CONFIG Function........................ 17-49
17–28 Parameters for the UI_FOR_ITEM Function... 17-51
17–29 Parameters for the UI_FOR_PUBLICATION_ID Function .. 17-53
17–30 Parameters for the VALIDATE Procedure.. 17-54
17–31 Values Returned by the VALIDATE Procedure... 17-55
17–32 Parameters for the CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION Procedure

17-56
18–1 Uses of Procedures and Functions in the CZ_modelOperations_pub package 18-2
18–2 Procedures and Functions in the Package CZ_modelOperations_pub 18-7
18–3 Parameters for the CREATE_RP_FOLDER Procedure.. 18-9
18–4 Parameters for the CREATE_UI Procedure .. 18-11
18–5 Parameters for the CREATE_JRAD_UI Procedure .. 18-13
18–6 Parameters for the DEEP_MODEL_COPY Procedure .. 18-15
18–7 Parameters for the EXECUTE_POPULATOR Procedure ... 18-17
18–8 Parameters for the FORCE_UNLOCK_MODEL Procedure... 18-18
18–9 Parameters for the FORCE_UNLOCK_TEMPLATE Procedure 18-20
18–10 Parameters for the GENERATE_LOGIC Procedure.. 18-21
18–11 Parameters for the IMPORT_SINGLE_BILL Procedure ... 18-23
18–12 Parameters for the IMPORT_GENERIC Procedure... 18-24
18–13 Parameters for the PUBLISH_MODEL Procedure... 18-26
18–14 Parameters for the REFRESH_SINGLE_MODEL Procedure ... 18-27
18–15 Parameters for the REFRESH_UI Procedure .. 18-28
18–16 Parameters for the REFRESH_JRAD_UI Procedure .. 18-29
18–17 Parameters for the REPOPULATE Procedure .. 18-30
18–18 Parameters for the REPUBLISH_MODEL Procedure ... 18-31
18–19 Values Returned by RP_FOLDER_EXISTS ... 18-33
18–20 Parameters for the RP_FOLDER_EXISTS Function... 18-33
A–1 Terminology Used in This Book ... A-1
C–1 Parameters for the View Configurator Parameters Concurrent Program........................ C-2
C–2 Parameters for the Modify Configurator Parameters Concurrent Program.................... C-3
C–3 Parameter for the Purge To Date Configurator Import Tables Concurrent Program C-4
C–4 Parameter for the Purge To Date Configurator Import Tables Concurrent Program C-5
C–5 Parameter for the Add Application to Publication Applicability List Concurrent Program .

C-6
C–6 Parameters for the Define Remote Server Concurrent Program C-7
C–7 Parameters for the Enable Remote Server Concurrent Program C-8
C–8 Parameters for the Modify Server Definition Concurrent Program.................................. C-9
C–9 Parameters for the Process a Single Publication Concurrent Program........................... C-11
C–10 Parameters for the Populate Configuration Models Concurrent Program C-13
C–11 Parameters for the Refresh a Single Configuration Model and Disable/Enable Refresh

Concurrent Programs .. C-14
C–12 Parameters for the Disable/Enable Refresh Concurrent Programs C-15
C–13 Parameter for the Import Configuration Rules Concurrent Program............................. C-16
C–14 Parameters for the Check Model/Bill Similarity Concurrent Program.......................... C-17
C–15 Check All Models/Bills Similarity Parameters .. C-18
C–16 Parameters for the Execute Populators in Model Concurrent Program......................... C-20

xx

C–17 Parameters for the Setup Configurator Data Migration Concurrent Program.............. C-21
C–18 Parameters for the Migrate Configurator Data Concurrent Program............................. C-22
C–19 Parameters for the Migrate Functional Companions for a Single Model Concurrent

Program ..C-23
C–20 Synchronize Cloned Target Data.. C-25
C–21 Synchronize Cloned Source Data ... C-26
C–22 Import Data into Specific Tables... C-26
C–23 Show Tables to be Imported.. C-27
E–1 Code Examples Provided .. E-1

xxi

Send Us Your Comments

Oracle Configurator Implementation Guide, Release 11i

Part No. B13604-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: czdoc_us@oracle.com

■ FAX: 781-238-9896. Attn: Oracle Configurator Documentation

■ Postal service:

Oracle Corporation
Oracle Configurator Documentation
10 Van de Graaf Drive
Burlington, MA 01803-5146
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xxii

xxiii

Preface

This guide presents tasks and information useful in implementing Oracle
Configurator, including information formerly covered in the Oracle Configurator
Custom Web Deployment Guide.

See the Oracle Configurator Installation Guide for installation information, the Oracle
Configurator Developer User’s Guide for information about developing configuration
models in Oracle Configurator Developer, the Oracle Configurator Modeling Guide for
information about designing configuration models that are best suited to Oracle
Configurator, the Oracle Configurator Methodologies for information and tasks useful in
implementing Oracle Configurator, the Oracle Configurator Extensions and Interface
Object Developer’s Guide for information about writing Configurator Extensions, the
Oracle Configurator Constraint Definition Language Guide for information about writing
Statement Rules, and the Oracle Configurator Performance Guide for information needed
for optimizing runtime performance of Oracle Configurator.

Intended Audience
This guide is intended for anyone responsible for supporting the use of Oracle
Configurator. This includes supporting the development environment (Oracle
Configurator Developer) as well as the runtime environment that is created for
deployment.

Ordinarily, the tasks presented in this book are performed by a Database
Administrator (DBA) or an Oracle Configurator implementer with DBA experience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation Screen readers may not always
correctly read the code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line; however, some

xxiv

screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

TTY Access to Oracle Support Services Oracle provides dedicated Text Telephone
(TTY) access to Oracle Support Services within the United States of America 24 hours a
day, seven days a week. For TTY support, call 800.446.2398.

Structure
This guide contains a table of contents, lists of examples, tables and figures, a reader
comment form, a preface, several chapters, appendixes, a glossary, and an index. The
chapters are organized in five parts. Within the chapters, information is organized in
numbered sections of several levels. Note that level does not imply importance or
degree of detail. For instance, third-level sections in one chapter (x.x.x) may not
contain information of equivalent detail to the third-level sections in another chapter.

■ Part I, "Introduction"

– Chapter 1, "Implementation Tasks" presents an overview of all known tasks in
an Oracle Configurator implementation, including custom tasks.

– Chapter 2, "Configurator Architecture" describes the elements of the Oracle
Configurator product and how they fit together.

■ Part II, "Data"

– Chapter 3, "Database Instances" describes the uses to which databases are put
when implementing Oracle Configurator, and specifics about using multiple
database instances.

– Chapter 4, "The CZ Schema" describes the basic characteristics of the CZ
schema, the schema settings and how they are used, and provides some
schema maintenance tips.

– Chapter 5, "Populating the CZ Schema" provides an overview of why and how
to import data from Oracle Applications and non-Oracle Applications
databases. It describes the import processes, the import tables used during
data import, how to import data into the CZ schema, data import verification,
the process for refreshing or updating imported data, and customizing data
import.

– Chapter 6, "Migrating Data" describes how to transfer data from another CZ
schema.

– Chapter 7, "Synchronizing Data" describes when and how data should be
synchronized. This includes: synchronizing BOM data after the import server
has changed, and synchronizing publication data after a database has been
cloned.

– Chapter 8, "CZ Schema Maintenance" explains how to maintain data when it
exists in more than one place and is potentially unsynchronized.

■ Part III, "Integration"

– Chapter 9, "Session Initialization" describes the format and parameters of the
initialization message for the runtime Oracle Configurator.

xxv

– Chapter 10, "Session Termination" describes the format and parameters of the
termination message for the runtime Oracle Configurator Servlet.

– Chapter 11, "Batch Validation" describes using Oracle Configurator in a
programmatic mode.

– Chapter 12, "Custom Integration" explains how to modify certain Oracle
Configurator files as well as the purpose of the files and where they can be
found.

– Chapter 13, "Pricing and ATP in Oracle Configurator" provides an overview of
how pricing works in a runtime Oracle Configurator.

– Chapter 14, "Multiple Language Support" explains how you can modify Item
descriptions in Oracle Applications and have them appear when you develop
configuration models and deploy User Interfaces.

■ Part IV, "Configuration Model"

– Chapter 15, "Controlling the Development Environment" describes how you
can setup access to the Oracle Configurator Developer environment with user
responsibility.

– Chapter 16, "Publishing Configuration Models" explains the database
processes for publishing configuration models to make them available to host
applications.

– Chapter 17, "Programmatic Tools for Development" describes a set of
programmatic tools (PL/SQL procedures and functions) that may be useful in
developing a configuration model and deploying a runtime Oracle
Configurator.

– Chapter 18, "Programmatic Tools for Maintenance" describes a set of
programmatic tools (PL/SQL procedures) that you can use primarily to
maintain a deployed runtime Oracle Configurator.

■ Part V, "Runtime Configurator"

– Chapter 19, "User Interface Deployment" describes the activities required to
complete the User Interface deployment of a runtime Oracle Configurator
embedded in a host Oracle Application such as Order Management or iStore.

– Chapter 20, "Deployment Considerations" describes the strategies you should
consider when you are ready to complete the deployment of a runtime Oracle
Configurator.

– Chapter 21, "Managing Configurations" describes the data structures
produced by Oracle Configurator during a configuration session, and how to
manage the life cycle of a configuration.

■ Part VI, "Appendices"

– Appendix A, "Terminology" defines the terms that found in the Oracle
Configurator Implementation Guide that are not defined in the Glossary.

– Appendix B, "Common Tasks" describes certain tasks that may be required
while implementing an Oracle Configurator. These tasks include: running
concurrent programs, server administration, connecting to a database
instance, verifying the CZ schema version, viewing status of Configurator
concurrent programs, querying registered Configurator concurrent programs,
checking BOM and Model Similarity.

xxvi

– Appendix C, "Concurrent Programs" describes the concurrent programs
available to either the Oracle Configurator Administrator or Oracle
Configurator Developer responsibility.

– Appendix D, "CZ Subschemas" lists the CZ tables that make up each of the
subschemas in the CZ schema. For table details, see the CZ eTRM on Metalink,
Oracle’s technical support Web site.

– Appendix E, "Code Examples" contains code examples that support other
chapters of this document. These examples are fuller and longer than the
examples provided in the rest of this document, which are often fragments.

■ "Glossary" contains definitions that you may need while working with Oracle
Configurator documentation.

The Index provides an alternative method of searching for key concepts and
product details.

Related Documents
For more information, see the following manuals in Release 11i of the Oracle
Configurator documentation set:

■ Oracle Configurator Constraint Definition Language Guide

■ Oracle Configurator Developer User’s Guide

■ Oracle Configurator Installation Guide

■ Oracle Configurator Extensions and Interface Object Developer’s Guide

■ Oracle Configurator Methodologies

■ Oracle Configurator Modeling Guide

■ Oracle Configurator Performance Guide

Be sure you are familiar with the information and limitations described in the latest
About Oracle Configurator documentation (formerly the Oracle Configurator Release
Notes) on Metalink, Oracle’s technical support Web site.

For more information, see the documentation for Oracle Applications (Release 11i),
Oracle RDBMS, the Oracle Applications Library, the product-specific Release Notes for
releases supported to work with Oracle Configurator, and the CZ eTRM on Metalink,
Oracle’s technical support Web site.

Additionally, as useful background in implementing applications, consult:

■ Oracle9i Database Performance Methods - Part No. A87504-02

Conventions
In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

 .

 .

 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

xxvii

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and Oracle
Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using Metalink, Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

Log in to your Metalink account and navigate to the Configurator TAR template:

1. Choose the TARs link in the left menu.

2. Click Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

a. Choose Product: Oracle Configurator or Oracle Configurator Developer

b. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using
Metalink.

For a complete listing of available Oracle Support Services and phone numbers, see:

www.oracle.com/support/

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a new term, a term defined in the
glossary, specific keys, and labels of user interface objects. Boldface
type also indicates a menu, command, or option, especially within
procedures

italics Italic type in text, tables, or code examples indicates user-supplied text.
Replace these placeholders with a specific value or string.

[] Brackets enclose optional clauses from which you can choose one or
none.

> The left bracket alone represents the MS DOS prompt.

$ The dollar sign represents the DIGITAL Command Language prompt
in Windows and the Bourne shell prompt in Digital UNIX.

% The percent sign alone represents the UNIX prompt.

name() In text other than code examples, the names of programming language
methods and functions are shown with trailing parentheses. The
parentheses are always shown as empty. For the actual argument or
parameter list, see the reference documentation. This convention is not
used in code examples.

Convention Meaning

xxviii

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For general information about the logging options available when working in
Configurator Developer, see the Oracle Configurator Developer User’s Guide.

For details about the logging methods available in Configurator Developer and a
runtime Oracle Configurator, see:

■ The Oracle Applications System Administrator’s Guide for descriptions of the Oracle
Applications Manager UI screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so
on.

■ The Oracle Applications Supportability Guide, which includes logging guidelines for
both System Administrators and developers, and related topics.

■ The Oracle Applications Framework Release 11i Documentation Road Map
(Metalink Note # 275880.1).

Part I
Introduction

Part I consists of chapters that present a baseline for understanding Oracle
Configurator. The chapters are:

■ Chapter 1, "Implementation Tasks"

■ Chapter 2, "Configurator Architecture"

Implementation Tasks 1-1

1
Implementation Tasks

This chapter provides an overview of tasks performed prior to implementing Oracle
Configurator. The list of tasks is organized into the following categories:

■ General Implementation Tasks

■ Database Tasks

■ Integration Tasks

■ Model Development Tasks

■ Deployment Tasks

1.1 General Implementation Tasks
General implementation tasks are the initial tasks that set up an environment and
enable the implementer to begin working with Oracle Configurator Developer.

■ Verify Oracle Rapid Install of Oracle Configurator, Oracle Configurator Developer
and the CZ schema. See the Oracle Configurator Installation Guide for additional
information.

■ Configure Oracle Configurator Developer, JInitiator, and your browser to display
appropriate fonts for Multiple Language Support (MLS). See the Oracle
Configurator Installation Guide for details.

■ See the latest About Oracle Configurator documentation on Metalink, Oracle’s
technical support Web site, for any effects an Oracle Configurator upgrade may
have on your development and test environments; new functionality in
Configurator Developer may depend on other applications.

■ Upgrade Oracle Configurator Developer to the latest release or patch level. See the
About Oracle Configurator documentation on Metalink for details.

■ Assign users an Oracle Configurator responsibility to use Oracle Configurator
Developer. For more information about assigning responsibilities, see Section 15.2,
"Setting up Access to Configurator Developer" and the Oracle Applications System
Administrator’s Guide.

■ Assign users either the Oracle Configurator Administrator or Oracle Configurator
Developer responsibility to run the Oracle Applications concurrent programs. For
more information about assigning responsibilities, see the Oracle Applications
System Administrator’s Guide. For more information on which concurrent program
can be run by the Oracle Configurator Administrator or Oracle Configurator
Developer responsibilities, see Chapter C, "Concurrent Programs".

Database Tasks

1-2 Oracle Configurator Implementation Guide

■ If you are want to continue using previously created DHTML User Interfaces, then
see the Oracle Configurator Installation Guide.

1.2 Database Tasks
Database tasks are the tasks that set up and support the development and deployment
of the CZ schema.

1.2.1 Required Database Tasks
These tasks must be performed to set up and support development and deployment of
a runtime Oracle Configurator.

■ Decide whether to use a single database instance for both development and
production, or a separate instance for development and an instance for
production. For information see Chapter 3, "Database Instances".

■ Verify that Inventory and BOM Model data in Oracle Applications are correctly
defined. See Section 5.2, "Standard Import".

■ Populate the CZ schema with production BOM and Inventory data for use in
defining configuration models. This is also referred to as data import in Oracle
Configurator documentation. For information, see Section 5.2, "Standard Import".

■ Control the scope of the data import by modifying values in the integration tables
(CZ_XFR_) provided for that purpose. For information, see Section 4.3, "Control
Tables".

■ Define and enable servers, as needed for data import, synchronization, and
publication. For information, see Section C.2, "Server Administration Concurrent
Programs" on page C-5.

■ Modify Configurator Parameters. The Oracle Configurator Administrator runs this
concurrent program to set installation-wide customizable settings (CZ_DB_
SETTINGS) that describe the structure and content of the CZ schema, and define
application functions. For information, see Section C.1.2, "Modify Configurator
Parameters".

■ Explode the BOM Model data if the data on which you plan to base your
configuration model is in a different database instance from the one in which you
are developing the configuration model. For information, see Section 5.2.6,
"Exploding BOM Models in Oracle Applications".

■ Refresh data in the CZ schema as production BOM and Inventory data changes.
For information, see Section 5.2.10, "Refreshing Imported Data".

■ Run the concurrent programs to migrate Item and Model structure data from one
schema into the CZ schema. For more information, see Chapter 6, "Migrating
Data".

■ Verify that after populating or refreshing the CZ schema the BOM Model data is
correct by viewing the Item Master area of the Repository in Oracle Configurator
Developer. For information, see the Oracle Configurator Developer User’s Guide.

■ Synchronize BOM Model data in the CZ schema with production Inventory and
BOM data if the import server or publication target have changed by running
concurrent programs for that purpose. For information, see Section 7.2,
"Synchronizing BOM Model Data".

Integration Tasks

Implementation Tasks 1-3

■ If you plan to base your configuration model on legacy data, prepare that data and
custom extraction and load programs so the data can be transferred to the CZ
schema. For information, see Section 5.4, "Custom Import"

■ Migrate Functional Companions that were developed prior to 11i10 to
Configurator Extensions. For more information see Section C.8, "Migrate
Functional Companions".

■ Purge tables in the CZ schema if your database gets too large and fails to perform
adequately. It is recommended that you purge tables on a regular basis. The Purge
Configurator Tables concurrent program deletes those records that are marked for
deletion. The Purge Configurator Import Tables, Purge To Date Configurator
Import Tables, and Purge To Run ID Configurator Import Tables concurrent
programs delete data in the CZ_IMP tables, and the corresponding data in the CZ_
XFR_RUN_INFOS, and CZ_XFR_RUN_RESULTS control tables. For more
information see Section 8.3, "Purging Configurator Tables".

■ Delete old configuration data by running the DELETE_CONFIGURATIONS API.
For more information, see DELETE_CONFIGURATION on page 17-39.

1.2.2 Optional Database Tasks
Optional tasks for providing additional flexibility in your Oracle Configurator
implementation include:

■ Use PL/SQL to modify nodes created in Configurator Developer and BOM Model
Item descriptions to use Multiple Language Support (MLS). For more information
see Chapter 14, "Multiple Language Support".

■ Write Configurator Extensions designed to populate CZ table fields with
configuration data that cannot be directly inserted using runtime Oracle
Configurator. For more information, see the Oracle Configurator Extensions and
Interface Object Developer’s Guide, and Section C.8, "Migrate Functional
Companions".

■ Design custom configuration attributes and attach them to certain nodes of
configuration models. For more information, see the Oracle Configurator
Methodologies documentation.

■ Write legacy rules in Constraint Definition Language (CDL) format and import the
rules into the CZ schema. For CDL information, see the Oracle Configurator
Constraint Definition Language Guide. See Section 5.3, "Rule Import" for rule import
information.

1.3 Integration Tasks
Integration tasks enable Oracle Configurator to work with a particular host
application.

1.3.1 Required Tasks for All Integrations
These tasks must be performed for all integrations of Oracle Configurator with a host
application.

■ Set profile options to integrate and set behavior of Oracle Configurator within
Oracle Applications. For a listing of profile options that affect Oracle Configurator,
see the Oracle Configurator Installation Guide.

Model Development Tasks

1-4 Oracle Configurator Implementation Guide

■ Verify and set the Apache and JServ properties for your host application that affect
the runtime Oracle Configurator. See the Oracle Configurator Installation Guide for
more information.

■ Verify and set properties of the Oracle Configurator Servlet for your host
application. See the Oracle Configurator Installation Guide for more information.

■ Test the integration of Oracle Configurator in the host application running in a
Web browser.

1.3.2 Optional Integration Tasks
These tasks provide additional aspects of integration between Oracle Configurator and
a host application, and apply to both custom and predefined integrations.

■ Provide pricing and ATP support for the runtime Oracle Configurator by setting
switches in the file cz_init.txt. See Chapter 13, "Pricing and ATP in Oracle
Configurator".

■ Enable Multiple Language Support (MLS). For details see Chapter 14, "Multiple
Language Support".

■ Set up the Model structure and Configurator Extensions for configuration
attributes. See the Oracle Configurator Methodologies documentation.

1.3.3 Tasks for Custom Integration
These tasks (in addition to the required tasks listed in Section 1.3.1) must be performed
if you are integrating Oracle Configurator with a custom host application. A custom
host application is one that does not provide any predefined integration with Oracle
Configurator.

■ Manually install servlet, media, and HTML files and verify that these files are in
the correct location. See the Oracle Configurator Installation Guide for more
information.

■ Tailor the initialization message that invokes the runtime Oracle Configurator.
For details, see Chapter 9, "Session Initialization"

■ Create and install a servlet that handles the runtime Oracle Configurator’s XML
termination message, which contains configuration output data. For details, see
Chapter 10, "Session Termination".

■ Set up a return URL for the servlet that handles the termination message, and add
it to the initialization message. For details, see Chapter 9, "Session Initialization".

1.4 Model Development Tasks
Model development tasks enable you to extend a BOM Model by adding additional
structure, rules, UIs, and publishing your configuration model to a host application.

1.4.1 Required Tasks for Model Development
These tasks must be performed so that you can create Models or add additional
structure, rules, and UIs to BOM Models.

■ Design configuration models with performance in mind. See the Oracle
Configurator Performance Guide for guidelines.

Model Development Tasks

Implementation Tasks 1-5

■ Verify the imported data in Configurator Developer if you are developing a
configuration model based on existing data in Oracle Applications Bills of
Material and Inventory. See Section 1.2, "Database Tasks"for additional tasks
needed to populate the CZ schema.

■ Define the structure, rules, and user interface in the Model’s Workbench. See the
Oracle Configurator Developer User’s Guide for more information.

■ Generate logic to create the structure and rules of the configuration model.
Generating logic is also used to help debug some issues. Rerun this procedure
after you have completed the following activities:

– Changed rule definitions

– Changed the Model structure

■ Select the Refresh option on the UI Workbench page or the UI Refresh Status on
the General Workbench page to update a User Interface with the latest
modifications to the User Interface definitions and customizations. Rerun this
procedure after you have completed the following activities:

– Changed the Model structure

– Refreshed your BOM-based model

■ Unit test your configuration model before publishing it. See the Oracle Configurator
Developer User’s Guide.

■ Create a publication for the configuration model to appropriate host applications.
See the Oracle Configurator Developer User’s Guide.

■ Define the configuration model’s applicability parameters in preparation for
publishing the configuration model so that it can be accessed by a host application.
See the Oracle Configurator Developer User’s Guide

■ Assign each publication to one Model and the appropriate usages to control when
and if the usages are invoked by the host applications. See the Oracle Configurator
Developer User’s Guide for additional information.

■ Publish configuration models for availability to host applications. For information,
see Chapter 16, "Publishing Configuration Models" and the Oracle Configurator
Developer User’s Guide.

■ Republish the configuration model if the Model’s structure, rules, or UI change.
For more information, see the Oracle Configurator Developer User’s Guide.

1.4.2 Optional Tasks for Model Development
The following task can be performed to provide additional Model functionality.

■ Write Configurator Extensions to extend the functional capabilities of your
configuration model beyond what is implemented in Oracle Configurator
Developer. For information on writing Configurator Extensions see the Oracle
Configurator Extensions and Interface Object Developer’s Guide, Oracle Configurator
Developer User’s Guide and the Oracle Configurator Methodologies documentation.

■ Change the default behavior of locking Models or UI Content Templates. For more
information, see the Oracle Configurator Developer User’s Guide.

■ Determine whether you want to filter ineffective Model structure nodes and rules
when working in Configurator Developer and then set the Effectivity Date Filter
accordingly. For more information about the Effectivity Date Filter, see the Oracle
Configurator Developer User’s Guide.

Deployment Tasks

1-6 Oracle Configurator Implementation Guide

1.5 Deployment Tasks
Deployment involves making a runtime Oracle Configurator available to end users.
The following tasks complete the deployment of a runtime Oracle Configurator either
embedded in a host Oracle Application or in a custom host application.

1.5.1 Required Tasks for All Deployments
The following tasks are required for the runtime Oracle Configurator to use the
DHTML user interface:

■ The browser running the DHTML runtime Oracle Configurator must be set up to
enable stylesheets and JavaScript. See either Microsoft Internet Explorer, or
Netscape Navigator Help for details.

■ Use Microsoft Internet Explorer 4.0 or later, or Netscape Navigator 4.07 or later, to
best view the DHTML runtime Oracle Configurator.

■ The browser must be set up to accept and send cookies. See either Microsoft
Internet Explorer, or Netscape Navigator Help for details.

■ Turn off pop-up blockers.

■ Recommended screen resolution is 800 X 600 or greater. This depends on how you
have generated the Components Tree user interface in Oracle Configurator
Developer. See the Oracle Configurator Developer User’s Guide for details.

■ System test the configuration model by accessing it from the host application.

■ Optimize the performance of the production environment by:

– Adjusting system size or setting up the database and application tiers on
multiple server computers.

– Tuning components of the Oracle Configurator architecture on the client
system, such as browser settings, swap space, and memory

– Adjusting Web server configuration settings

– Determining whether you should load balance the Apache Web listener

– Determining whether you should load balance across CPUs on a multi-CPU
machine

For details see the Oracle Configurator Performance Guide.

■ Run LoadRunner to determine response time, CPU utilization, number of
transactions per hour, throughput and hits per second. See the Oracle Configurator
Performance Guide for load testing.

1.5.2 Optional Tasks for Deployment
These tasks can be performed to maximize performance, usability, and functionality
when your configuration model is deployed to end users.

■ Consider preloading a configuration model for improved performance. For details
see the Oracle Configurator Performance Guide.

■ Load balance the Apache Web listener (HTTP). For details see the Oracle
Configurator Performance Guide.

■ Set up Secured Sockets Layer (SSL) if you want to create a secure connection
between a client and server system. See Section 20.6, "Load Balancing and Secure

Deployment Tasks

Implementation Tasks 1-7

Sockets Layer" on page 20-4 for details. For additional SSL information, see
Metalink, Oracle’s technical support Web site.

■ Adjust the ApJServVMTimeout setting that affects the amount of time to wait for
the JVM to start up and respond. See the Oracle Configurator Installation Guide for
details.

■ Pricing behavior must be set for Item price display type and price data update
method. For more information, see Section 13.5, "Controlling Pricing and ATP in a
Runtime Oracle Configurator" on page 13-10.

■ Consider setting up firewalls, using routers, and separate computers to protect
unauthorized access to your servers. For more information, see Chapter 20,
"Deployment Considerations".

1.5.3 Tasks for Custom Deployments
If you are implementing a custom deployment, then consider the following:

■ Create a UI that adheres to the Oracle guidelines. See Oracle Configurator Developer
User’s Guide for User Interface information.

■ Create online Help for the runtime Oracle Configurator. See Oracle Configurator
Developer User’s Guide for generic runtime information.

Deployment Tasks

1-8 Oracle Configurator Implementation Guide

Configurator Architecture 2-1

2
Configurator Architecture

This chapter presents the elements of the Oracle Configurator product and how they
fit together, including information about:

■ Runtime Oracle Configurator

■ Oracle CZ Schema

■ Oracle Configurator Developer

■ Multi-Tier Architecture

2.1 Overview
Oracle Configurator Developer is both a development and maintenance environment
used to create, modify, and unit test configuration models and custom Oracle runtime
configurator pages. The runtime Oracle Configurator, Oracle Configurator Developer,
and CZ schema run as part of the Oracle Applications eBusiness Suite in a multi-tier
architecture.

Oracle Configurator Developer is a thin client development environment that connects
directly to the CZ schema.

Both the runtime Oracle Configurator and Oracle Configurator Developer run in a
browser. The Oracle Configurator (the application itself) runs on the application server
machine with the internet application server brokering the processes and http
connection.

The runtime Oracle Configurator and Oracle Configurator Developer:

■ Are HTML based

■ Operate within the Oracle Applications (OA) Framework

■ Are Self Service Web applications

Oracle Configurator consists of the following elements:

■ Oracle Configurator Developer

■ CZ schema within the Oracle Applications database

■ Runtime Oracle Configurator

Oracle Configurator Developer includes the following OA Framework features:

■ Based on J2EE standards

■ Facilitates access by the disabled community

■ Multiple Language Support (MLS)

Runtime Oracle Configurator

2-2 Oracle Configurator Implementation Guide

■ Multi-currency support

■ Reusable UI components

Additionally, Oracle Configurator Developer leverages the latest 9iAS technology,
such as:

■ Caching

■ Event Handling

■ Security

■ State Management

■ XML Based Declarative UIs

■ Optimized HTML UI rendering

■ Presentation is separate from business logic

■ Business Components for Java (BC4J)

■ Business logic encapsulation

■ Optimized DB interaction

■ Scalability and performance

■ Message-service EJB Architecture

■ Full support for transactions, fail-over and multi-tier deployment

■ Minimizes inter-tier traffic

The runtime Oracle Configurator, Configurator Developer, and the CZ schema are
installed with Oracle Applications Release 11i by running Oracle Rapid Install.

2.2 Runtime Oracle Configurator
The runtime Oracle Configurator enables end users to select options interactively in a
Web browser.

It is also possible to run Oracle Configurator as a programmatic background process,
such as when an end user changes the quantity of a configured item. The background
process validates the configuration without requiring further end-user interaction.

2.2.1 Access
End users access the runtime Oracle Configurator by logging into an application that
hosts Oracle Configurator. When the user requests that the host application configure
something, the host application invokes Oracle Configurator, which then becomes the
foreground application during a configuration session. At the end of the configuration
session, the user terminates Oracle Configurator, and the host application returns to
the foreground.

There are several factors that affect the way that you can enable users to access the
runtime Oracle Configurator:

■ Type of Host Application

■ Login to Host Application

■ Invocation of Oracle Configurator by Host Application

■ Incorporation of Oracle Configurator in the Host Application’s UI

Runtime Oracle Configurator

Configurator Architecture 2-3

These factors are described in the following sections.

2.2.1.1 Type of Host Application
The host application for the runtime Oracle Configurator can be one of the following:

■ An application that is part of Oracle Applications, which you reach through the
E-Business Suite home page. Examples are: Oracle Order Management, iStore, and
Oracle Contracts. Oracle Configurator Developer is also such a host application.
For a list of host applications see the latest About Oracle Configurator
documentation on Metalink, Oracle’s technical support Web site.

■ A custom application that provides its own user interface, and at runtime
communicates with the Oracle Configurator engine through the Configuration
Interface Object (CIO).

2.2.1.2 Login to Host Application
End users of the host application can log in by one of the following methods:

■ If the host application is part of Oracle Applications, then users log in to the
E-Business Suite home page with a user ID and password that are authenticated
by Oracle Applications. This process generates an ICX session ticket, which
contains the session authentication information that is used by the runtime Oracle
Configurator.

■ If the host application is not part of Oracle Applications, then, after a user logs in
to the host application, that application must specify user ID, password, and
database identification when it invokes the runtime Oracle Configurator.

2.2.1.3 Invocation of Oracle Configurator by Host Application
All host applications send an initialization message to start the runtime Oracle
Configurator, and specify parameters of the message to control the initial state of the
runtime Oracle Configurator. Oracle Configurator processes the initialization message
in the following way:

1. The host application sends the initialization message, which is in XML, to the URL
of the Oracle Configurator Servlet. The host application obtains this URL from the
profile option BOM: Configurator URL of UI Manager. See the Oracle Configurator
Installation Guide for details about setting profile options. The Oracle Configurator
Servlet is described in Section 2.2.4, "Oracle Configurator Servlet" on page 2-4.

Oracle Configurator can be invoked programmatically by the host application,
without user interaction. This is called batch validation, which is described in
Chapter 11, "Batch Validation".

a. If the initialization message is wrapped in the <batch_validate> element,
then the Oracle Configurator Servlet runs Oracle Configurator in a batch
validation session.

b. If the initialization message is not intended for batch validation, then Oracle
Configurator determines which type of user interface to render, based on the
value of the initialization parameter ui_type.

The user interface for the runtime Oracle Configurator can use one of the
styles described in Section 2.2.3, "Runtime UI Types" on page 2-4. It can also
use a completely custom UI, if the host application provides its own user
interface, and its own code to communicate with the Oracle Configurator
engine directly, through the Oracle Configuration Interface Object (CIO).

Runtime Oracle Configurator

2-4 Oracle Configurator Implementation Guide

2. Oracle Configurator processes the parameters in the initialization message, and
begins a configuration session, rendering the specified runtime Oracle
Configurator. The parameters determine the initial state of the configuration
session, specifying which model to configure and a variety of other configuration
data. The particular selection of parameters and values depends on the
requirements of the host application. See Chapter 9, "Session Initialization" for
details.

2.2.1.4 Incorporation of Oracle Configurator in the Host Application’s UI
Invocation results in the host application incorporating the user interface for the
runtime Oracle Configurator into its own user interface in one of the following ways:

■ Standalone page: Oracle Configurator occupies all of a standalone page, in a page
separate from that used by the host application. Examples: Oracle Order
Management and the Oracle Configurator Developer

■ Frame: Oracle Configurator occupies a frame that is embedded in the page used
by the host application. Example: Oracle iStore.

■ Region: Oracle Configurator occupies a region that is embedded in a page used by
the host application. Only possible if the host application is a member of Oracle
Applications that is constructed with the Oracle Applications Framework. For
more information about the Oracle Applications Framework, see the Oracle
Applications Framework Release 11i Documentation Road Map (Metalink Note #
275880.1).

■ Custom container: Oracle Configurator occupies a JavaServer Page that you
specify when you publish your Model.

2.2.2 Oracle Configurator Security on Publicly Accessible Web Servers
For information and recommendations on preparing the deployment of Oracle
Configurator on publicly accessible Web servers, see Chapter 20, "Deployment
Considerations".

2.2.3 Runtime UI Types
Depending on your runtime UI requirements, you can deploy the following types of
runtime Oracle Configurators:

■ User Interfaces that are based on the OA Framework, deployed as part of the
E-Business Suite, and launched from other Oracle Applications. For a list of Oracle
Applications that integrate with Oracle Configurator, see the latest About Oracle
Configurator documentation on Metalink. For details about creating generated UIs,
see the Oracle Configurator Developer User’s Guide.

■ Legacy Configurator User Interfaces (DHTML or Java applet) from previous
releases of Oracle Configurator. These legacy UIs cannot be edited using the
HTML-based Oracle Configurator Developer. For details, see the Oracle
Configurator documentation from previous releases and the Oracle Configurator
Installation Guide.

■ The Generic Configurator User Interface.

2.2.4 Oracle Configurator Servlet
The Oracle Configurator Servlet contains the machinery used to support:

■ Batch validation

Runtime Oracle Configurator

Configurator Architecture 2-5

■ Legacy Configurator user interfaces

The Oracle Configurator Servlet is responsible for rendering legacy Configurator user
interfaces and brokering communication between the configuration model, the
database, and the client browser.

The OC Servlet consists of the following elements:

■ UI Server

■ Configuration Interface Object (CIO)

■ Oracle Configurator Engine

The OC Servlet runs on Oracle Internet Application Server (iAS), which includes the
Apache Web Server. The behavior of the OC Servlet can be customized by setting
servlet properties. The properties of the OC Servlet are described in the Oracle
Configurator Installation Guide. Information about setting servlet properties is presented
in the Oracle Configurator Performance Guide.

2.2.4.1 UI Server
The UI Server is an element of the OC Servlet that is not used by Oracle Configurator
when it renders a user interface in the Oracle Applications Framework.

The UI Server that processes user input from a client user interface and renders back
the UI for display to the end user based on information received from the Oracle
Configurator engine. The UI Server provides a common level of support for user
interfaces (DHTML and Java applet) that are not created by the HTML-based Oracle
Configurator Developer.

2.2.4.2 Configuration Interface Object (CIO)
The CIO is an API layer that handles communication between the Oracle Configurator
engine and the UI. The API methods of the CIO can be used to access the configuration
model and Oracle Configurator behaviors. Configurator Extensions and custom UIs
communicate with the Oracle Configurator engine through the CIO.

For more information see the Oracle Configurator Extensions and Interface Object
Developer’s Guide.

2.2.4.3 Oracle Configurator Engine
The Oracle Configurator engine validates user selections and provides results based
on the compiled structure and rules of a configuration model.

The Oracle Configurator engine has no public API and cannot be modified.

Note: The inclusion of the Oracle Configurator Servlet in this release
provides compatibility for host applications that were already
integrated with Oracle Configurator before the adoption of the Oracle
Applications Framework. See Section 2.2.1.3, "Invocation of Oracle
Configurator by Host Application" on page 2-3 for an example of this
integration. All other areas of Oracle Configurator provide integration
through the Oracle Applications Framework, as described elsewhere
in this chapter. For more information on the Oracle Applications
Framework, see the Oracle Applications Framework Release 11i
Documentation Road Map (Metalink Note # 275880.1).

Oracle CZ Schema

2-6 Oracle Configurator Implementation Guide

2.3 Oracle CZ Schema
The CZ schema consists of Configurator (CZ) tables in the Oracle Applications 11i
database that are accessed by both the runtime Oracle Configurator and Oracle
Configurator Developer.

The CZ schema is organized into subschemas that store:

■ Imported data from other Oracle Applications database tables

■ Settings that control the behavior of Configurator processes

■ Data that defines the Model structure, rules, and UI of configuration models

■ Saved configurations

Oracle Configurator Developer stores the complete definition of the User Interface in
the CZ schema, where it is available to both Oracle Configurator Developer and a
runtime Oracle Configurator.

See Appendix D, "CZ Subschemas" for a listing of the tables that are in each of the
subschemas. For more information about the CZ schema data model, see the CZ eTRM
on Metalink, Oracle’s technical support Web site.

2.4 Oracle Configurator Developer
Oracle Configurator Developer:

■ Allows creating, organizing, managing, and publishing Models

■ Includes tools for generating runtime Configurator User Interfaces

■ Allows users to define configuration rules

2.4.1 Access
Users access Configurator Developer by logging into Oracle Applications and
selecting the appropriate responsibility. The following responsibilities are predefined
and available with initial installation:

■ Oracle Configurator Developer

■ Oracle Configurator Administrator

■ Oracle Configurator Viewer

For more information on accessing Configurator Developer, see Chapter 15,
"Controlling the Development Environment".

2.4.2 Types of Configuration Models
Users of Configurator Developer can create a configuration model using only the
structural elements (Model, Components, Features, Options) available in Configurator
Developer. This is called a Developer Model and might be used to create a standalone
or prototype configuration.

If the configuration model is based on an imported ATO or PTO BOM Model, then
users of Configurator Developer can extend the imported Model with Configurator
Developer structure to create guided buying or selling questions, and additional
internal structure to support rule definition.

Users of Configurator Developer can also extend the behavior of configuration models
beyond what can be implemented in Oracle Configurator Developer by creating

Multi-Tier Architecture

Configurator Architecture 2-7

Configurator Extensions. Configurator Extensions are built with custom or provided
Java code that uses the fully supported, fully documented Java API methods of the
CIO. Implementers create Configurator Extensions and then connect them to
configuration models in Configurator Developer.

2.4.3 Unit Testing
To unit test a configuration model, you can access the runtime Configurator UI as a
test environment directly from Configurator Developer to create configurations. You
can also use the Model Debugger in Configurator Developer to unit test new
configurations or restore saved configurations. Testing uses the same application
architecture as a deployed runtime Configurator.

When unit testing, you can:

■ Specify testing session parameters, such as Effectivity dates and a Usage

■ Save and restore configurations

■ Run Configurator Extensions

■ Display pricing and ATP information

Testing from Configurator Developer through Oracle Applications does not involve
running the host application where your configuration models are deployed, such as
Order Management. For more testing information, see the Oracle Configurator Developer
User’s Guide.

2.5 Multi-Tier Architecture
Oracle Applications architecture is a framework for multitiered, distributed
computing. Oracle Application Framework fits into a three-tier architecture. The three
tiers are:

■ Application

■ Client

■ Database

Oracle Application Framework also fits into a four-tier architecture.

The four tiers are:

■ Application

■ Client

■ Database

■ Web

For more information about the Oracle Application Architecture, see the Oracle
Applications Concepts documentation and the Oracle Applications Framework Release
11i Documentation Road Map (Metalink Note # 275880.1).

2.5.1 Runtime Oracle Configurator
The elements of a runtime Oracle Configurator that span the four tiers are shown in
Figure 2–1.

Multi-Tier Architecture

2-8 Oracle Configurator Implementation Guide

Figure 2–1 Four tier Architectural Overview of a Runtime Oracle Configurator

During an interactive runtime session, the Web tier contains the displayed UI. The
Configurator Messaging service in the Applications tier uses Enterprise Java Beans to
handle requests from the displayed page on the Web tier.

The elements of a runtime Oracle Configurator that span the three tiers are shown in
Figure 2–2.

Figure 2–2 Three tier Architectural Overview of a Runtime Oracle Configurator

2.5.2 Oracle Configurator Developer Three Tiers
During development, Configurator Developer runs on a three-tier architecture, with
the thick web tier accessing the database as shown in Figure 2–3.

Multi-Tier Architecture

Configurator Architecture 2-9

Figure 2–3 Three tier Architectural Overview of Oracle Configurator Developer

Configurator Developer is a thin-client development environment that connects
directly to the CZ schema. Configurator Developer is built on the Oracle Applications
Framework and leverages the latest 9iAS technology that allows for XML Based
Declarative UIs, Business Components for Java (BC4J), and Message-Service EJB
architecture.

Multi-Tier Architecture

2-10 Oracle Configurator Implementation Guide

Part II
Data

Part II presents information about working with the CZ schema as described in
Section 1.2, "Database Tasks" on page 1-2. Part II contains the following chapters:

■ Chapter 3, "Database Instances"

■ Chapter 4, "The CZ Schema"

■ Chapter 5, "Populating the CZ Schema"

■ Chapter 6, "Migrating Data"

■ Chapter 7, "Synchronizing Data"

■ Chapter 8, "CZ Schema Maintenance"

Database Instances 3-1

3
Database Instances

Whether your implementation project uses a single or two separate Oracle
Applications database instances, the database serves multiple purposes during an
Oracle Configurator implementation. The topics in this chapter include:

■ Database Uses

■ Multiple Database Instances

■ Model Development

■ Maintenance

■ Production

For details about the CZ schema within an Oracle Applications database instance, see
Chapter 2, "Configurator Architecture" and Chapter 4, "The CZ Schema".

3.1 Database Uses
During an Oracle Configurator implementation, the Oracle Applications database is
used for:

■ Migrating or importing data into the CZ schema

■ Running Oracle Configurator Developer to create configuration models

■ Unit and system testing configuration models

■ Publishing configuration models

■ Running a production Oracle Configurator

■ Storing Items, BOM Models, and saved configurations

During an Oracle Configurator implementation and deployment, Oracle supports
using either a single database instance for all operations, or two separate database
instances - one for Model Development and one for Production.

Multiple Database Instances

3-2 Oracle Configurator Implementation Guide

Figure 3–1 Single Database Environment

A publication’s details and applicability parameters determine a configuration
model’s unique deployment. For more information on deploying a configuration
model, see Chapter 16, "Publishing Configuration Models".

To support Oracle Configurator implementations on separate development and
production database instances, Oracle provides the means for moving and
synchronizing data across the two instances. For more information about moving data,
see Chapter 5, "Populating the CZ Schema" and Chapter 6, "Migrating Data". For more
information about synchronizing data, see Chapter 7, "Synchronizing Data".

For more information about implementing Oracle Configurator in two separate
database instances, see Section 3.2.

3.2 Multiple Database Instances
Once a configuration model is deployed, separate database instances can ensure that
maintenance or instabilities in the operations of the development database instance do
not interfere with end-user access or ongoing maintenance of the application that is in
production use.

Although the following operations can be accomplished on a single database instance,
they commonly involve a separate development and production database instance:

■ Importing or migrating data from a production database instance into the
development CZ schema

■ Publishing configuration models from a development instance to a production CZ
schema

■ System testing configuration models in a production database instance

When working with two database instances, the one in which the user creates,
develops, and runs Oracle Configurator Developer is the local or source database
instance. The database instance to which Models are published and used in production
is the remote or target database instance.

3.2.1 Reasons for Multiple Database Instances
Although it is possible to implement and deploy Oracle Configurator using only one
database instance, many projects use two database instances to distinguish between
Model development and production use.

Note: Publishing Models from more than one development instance
to the same production instance can cause unresolvable problems with
data synchronization.

Multiple Database Instances

Database Instances 3-3

■ Model Development can serve as:

– Import target

– Publication source and target

– Migration target

– BOM Model Synchronization source or target

■ Production can serve as:

– Import source

– Publication target

– Migration source

– BOM Model Synchronization source

Figure 3–2 shows the interaction when working with two distinct database
environments.

Figure 3–2 Two Database Environments

See Section 1.2, "Database Tasks" on page 1-2 for scenarios using separate development
and production database instances.

3.2.1.1 Import Source and Target
To develop a BOM-based configuration model, BOM Model data must be imported
into the CZ schema. The imported data used to develop a runtime Oracle Configurator
should be production data. The production database serves as the import source. The
CZ schema serves as the import target. Prior to publishing, a configuration model is
unit tested from Configurator Developer by launching either the Model Debugger, or a
generated User Interface in Configurator Developer. For information about unit
testing, see the Oracle Configurator Developer User’s Guide. For information about data
import, see Chapter 5, "Populating the CZ Schema".

3.2.1.2 Publication Source and Target
Configuration models must be published from the development database instance for
availability to system testing or production in the same or a different database. The
development database instance is the publication source. The system test or
production database is the publication target. You can use the Publishing page in
Oracle Configurator Developer to delete existing publications on the target instance.
See the Oracle Configurator Developer User’s Guide for additional publishing
information. For information about publishing, see Section 16.4, "Publishing a
Configuration Model" on page 16-8.

If you change the publication source or target or use a cloned source or target, then
you must synchronize the publication data. See Chapter 7, "Synchronizing Data". If the

Multiple Database Instances

3-4 Oracle Configurator Implementation Guide

BOM Model data changes in Oracle Bills of Material, or you modify the Model
structure, or UI in Configurator Developer, then you need to republish the Model in
Oracle Configurator Developer’s Publications area of the Repository.

3.2.1.3 Decommissioning a Database Instance
Decommissioning a production database instance (target) causes synchronization
problems. For more information on synchronization, see Chapter 7, "Synchronizing
Data".

3.2.1.4 Migration Source and Target
In cases where you are moving your Configurator implementation or deployment
from one database instance to another, you may need to migrate configuration model
data. For more information about migration, see Chapter 6, "Migrating Data".

3.2.1.5 BOM Synchronization Source and Target
In cases where the import source or publication target change, it may be necessary to
synchronize the BOM-based configuration model with the corresponding production
BOM. For more information about BOM synchronization, see Chapter 7,
"Synchronizing Data".

3.2.2 Linking Multiple Database Instances
When creating an empty database or repurposing an existing one to serve as a source
or target of data operations across two database instances, the databases must be
linked. Defining and enabling the remote server sets up the necessary database links
between the source and target databases.

See Section B.4, "Server Administration" on page B-3 for general information on setting
up database links. For details on running the concurrent programs, see Section C.2.2,
"Define Remote Server" on page C-6, and Section C.2.3, "Enable Remote Server" on
page C-7.

3.2.3 Instance and Host System Names
Multiple database instances can exist on a single or separate host systems. Both the
database instance and the host system have a name. The name of the database instance
and host system are relevant in all the uses listed in Section 3.2.1, "Reasons for
Multiple Database Instances" on page 3-2.

In this book, the database instance you are connected to or logged in to is the local or
current database instance, and the local system is the local host. Other instances,
whether on the local host system or a different remote system, are remote instances in
relation to the local instance.

The local database instances can serve as:

■ Target database for data migration

■ Target database for data import

■ Source database for publishing configuration models

■ Original database for creating a clone

Remote database instances can serve as:

■ Source database for data migration

■ Source database for data import

Maintenance

Database Instances 3-5

■ Target database for publishing configuration models

The SID is used to identify the database instance that Oracle Configurator Developer
uses. The database instance name is also known as the local name. The database
instance and host names are required in various places for the correct operation of
Oracle Configurator Developer, the CZ schema, and Configurator concurrent
programs. The SID is specified during Rapid Install. For more information, see the
Installing Oracle Applications guide.

3.3 Model Development
A development database instance is one in which you create your configuration
model.

Unit testing is initiated from Configurator Developer by launching either the Model
Debugger or a generated User Interface. Unit testing enables the implementer to test
configuration rules and UI functionality in the development database instance. Unit
testing ensures that rules and UI modifications work as desired. For additional
information, see the Oracle Configurator Developer User’s Guide.

When you upgrade the release version of Oracle Configurator that your runtime
Oracle Configurator runs against, you start by upgrading the CZ schema. For
information about updating your CZ schema, see the Oracle Configurator Installation
Guide.

3.4 Maintenance
Oracle Configurator data is maintained in the maintenance environment. A
maintenance environment is similar to a development environment because it requires
many of the same operations such as upgrading the CZ schema, refreshing
configuration data, fixing and improving configuration models, and periodically
republishing the models. It is important to synchronize any changes in the
maintenance database instance with the development database instance for the next
release of your runtime Oracle Configurator. For more information on
synchronization, see Chapter 7, "Synchronizing Data".

Note: There must only be one development database instance.
Configuration models that are available to end users should be
published only from a single development environment. Publishing
Models from multiple development instances to a single test or
production instance could result in:

■ Publications with overlapping applicability parameters

■ Multiple development environments leading to confusing
publication history. Publication history is maintained on the
development environment.

■ Overwriting a configuration model’s snapshot of its Item Master.
When a configuration model is published, the publication has a
snapshot of the development environment’s Item Master. If a
configuration model is published from a different development
environment, then the snapshot of its Item Master overwrites the
original Item Master.

Production

3-6 Oracle Configurator Implementation Guide

3.5 Production
A production environment is one in which runtime Oracle Configurator end users use
the software in a production mode. The production environment is also used for
system testing.

3.5.1 System Testing
The system testing environment is generally the production environment and used to
verify that data transfers and modifications in a deployed scenario work as desired.
For example, changes to the Model structure in Oracle Configurator Developer should
propagate to the host application such as Order Management.

System testing includes publishing the configuration model and UI, accessing it using
at least one host application, and specifying various effective dates. System testing
tests:

■ Performance of the configuration model

■ End-user access

■ Security

■ Integration customizations

3.5.2 Deploying a Model
To prepare for deploying the configuration model to your production environment,
you must consider integration with other applications, perform unit testing, and
system testing. For additional information see the Oracle Configurator Developer User’s
Guide.

If the development database and the production database are not on the same
computer, then the production database server must be defined and enabled. For more
information on defining a remote server, see Section C.2.2, "Define Remote Server".

Before you publish the configuration model, purging records flagged for deletion
results in a more efficient use of computer resources. For more information about
purging records, see Section 8.3, "Purging Configurator Tables" on page 8-1.

For information about publishing a configuration model to a production CZ schema,
see Chapter 16, "Publishing Configuration Models".

The CZ Schema 4-1

4
The CZ Schema

This chapter provides some basic information about the CZ schema:

■ Characteristics of the Oracle CZ Schema

■ Import Tables

■ Control Tables

■ CZ_DB_SETTINGS Table

4.1 Characteristics of the Oracle CZ Schema
For a description of the CZ schema, see Section 2.3, "Oracle CZ Schema" on page 2-6.

4.1.1 Online Tables and Integration Tables
The CZ schema contains online and integration tables. The online and integration
tables are organized into subschemas for storing the data of configuration models and
saved configurations.

The online tables contain the data that is used by Oracle Configurator Developer and
the runtime Oracle Configurator. Every online table that receives imported data has a
corresponding import table. For example, CZ_ITEM_TYPES is populated with data
from the CZ_IMP_ITEM_TYPE table during the import process. See Section 4.1.2 for
more information about the CZ subschemas.

The integration tables consist of import and control tables. See Section 4.2 for
information about the import tables and Section 4.3 for information about control
tables. See Chapter 5, "Populating the CZ Schema" for information about using the
integration tables.

4.1.2 CZ Subschemas
Both the online and integration tables of the CZ schema are organized into
subschemas:

ADMN - Administrative
CNFG - Saved Configurations
ITEM - Item Master
LCE - Logic for Configuration (Generate Logic)
PB - Publication
PROJ - Project Structure
RP - Repository
RULE - Rule
TXT - Text

Import Tables

4-2 Oracle Configurator Implementation Guide

TYP - Data Typing
UI - User Interface
XFR - Transfer specifications and control

Additionally, there are some key table views:

■ CZ_CONFIG_DETAILS_V stores selected BOM Model node records.

■ CZ_CONFIG_ITEMS_V stores all selected node records for both BOM Models and
Oracle Developer Models

See Appendix D, "CZ Subschemas" for a listing of tables in each subschema. For table
details, see the CZ eTRM on Metalink, Oracle’s technical support Web site.

4.1.3 Public Synonyms
The CZ schema does not use public synonyms.

4.1.4 Schema Customization
Customizing the data model of the CZ schema is not recommended, because such
customizations may not be preserved during an upgrade or migration.

Various user expansion fields in the CZ schema, such as USERNUMn and USERSTRn
in the CZ_PS_NODES table, are available for custom use. The data in the user
expansion fields is preserved during a schema upgrade or migration. For more
information, see the CZ eTRM on Metalink, Oracle’s technical support Web site.

4.2 Import Tables
Every import table corresponds to an online table both structurally and relationally.
Each import table contains the same fields as the corresponding online table, as well as
additional fields to manage the import and correlate the data with the existing data in
the online table.

Import tables consist of:

■ Import Control Fields

■ Online Data Fields

■ Surrogate Key Fields

Because import tables are meant to capture as much data as possible, all fields are
nullable and there are no integrity constraints such as primary-key definitions, unique
indexes, or foreign-key references. The import tables allow batch population of the CZ
schema’s online tables.

Each import table’s name is similar to its online counterpart. Import tables have CZ_
IMP prefix instead of just CZ_. For example, the imported data in CZ_IMP_
PROPERTY populates CZ_PROPERTIES, and CZ_IMP_ITEM_TYPE populates CZ_
ITEM_TYPES.

The import tables temporarily store extracted or legacy data that concurrent programs
access when creating, updating, or deleting records in the CZ schema. The CZ_IMP
tables are populated by running the Populate or Refresh Configuration Models
concurrent programs. For more information see Section C.4, "Populate and Refresh
Configuration Models Concurrent Programs".

For more information about:

Import Tables

The CZ Schema 4-3

■ How data moves from sources outside the CZ schema through the import tables to
the online tables, see Chapter 5, "Populating the CZ Schema"

■ Dependencies among import tables and import table codes, see Section 4.2.4,
"Dependencies Among Import Tables" on page 4-5.

4.2.1 Import Control Fields
Import control fields contain data that is used to manage the import process for each
record. Import control data is not transferred to the online tables and is not used to
resolve key values or anything else. Table 4–1 describes the import control fields.

Table 4–1 Import Control Fields

Field Name Type Description

RUN_ID INTEGER Input field that associates a record with an import
run.

REC_NBR INTEGER Input field that is a one-up sequence number
uniquely identifying each record within a RUN_ID.

DISPOSITION CHAR(1) Output field that indicates whether the record was
inserted, modified, unchanged, or rejected after an
import:

I = Insert

M = Modify

N = No change

R = Rejected

Null indicates that the record’s disposition has not
been determined.

Importing rule data sets DISPOSITION in CZ_IMP_
RULES and CZ_IMP_LOCALIZED_TEXTS. The
success or failure of rule processing stages sets the
DISPOSITION field accordingly:

P = Passed

R = Rejected

During the key resolution stage of rule import
(REC_STATUS=KRS), DISPOSITION can be:

I = Rule is new in the database instance.

M = Rule has previously been imported.

For additional rule import information, see
Section 5.3, "Rule Import" on page 5-16.

Import Tables

4-4 Oracle Configurator Implementation Guide

4.2.2 Online Data Fields
The import tables’ data fields exactly match the fields in the corresponding online
table and are used to hold the data to be put into the online table.

4.2.3 Surrogate Key Fields
Surrogate key fields in the import tables hold the customer-provided extrinsic
identifications for data to be imported. These include both foreign surrogate keys and
surrogate primary keys.

Foreign Surrogate Key – A foreign surrogate key is a reference to a different table
made through that table’s surrogate primary key rather than through the online table’s

REC_STATUS VARCHAR(4) Output field that indicates the record’s validation
status:

DUPL indicates the record is a duplicate.

ERR indicates the record has not been modified or
inserted into the target database table because of an
error in the transfer stage.

Fnnn indicates the nnn field is an invalid foreign-key
reference.

Nnnn indicates the required nnn field has null data.

NULL indicates the record status is open. Once this
status is set, further processing of the record is
suppressed.

OK indicates the data in the record now exists in the
online database table.

PASS indicates the record is marked for either
modification or insertion after the key resolution
stage.

Importing rule data sets REC_STATUS in CZ_IMP_
RULES and CZ_IMP_LOCALIZED_TEXTS. The rule
processing stage is tracked in REC_STATUS. The
following are the stages of processing rule data:

CND indicates the first stage of processing rule data.
This stage verifies that all required columns are
populated and assigns default values for other
columns. See Section 5.3.6, "Rule Validation" on
page 5-21 for a list of the required columns.

KRS indicates the second stage of processing rule
data if the data passes the CND stage
(DISPOSITION=P). The KRS (key resolution) stage
verifies and resolves all foreign key relationships
among tables that are involved in the import.

XFR indicates the third stage of processing rule data.
This stage transfers the rule data to the CZ online
tables.

OK indicates that the rule has been successfully
imported. This is the final reporting stage.

ERR indicates that the rule failed parsing. This is the
final reporting stage.

For additional rule import information, see
Section 5.3, "Rule Import" on page 5-16.

Table 4–1 (Cont.) Import Control Fields

Field Name Type Description

Import Tables

The CZ Schema 4-5

integer key value. A foreign surrogate key consists of one or more fields that resolve
references from one import table to another. These keys are named FSK_table_refno_
fldnum, where table is the name of the referenced table, refno is the number of the
table-to-table reference, and fldnum is the position of the referenced surrogate-key field
in the referenced import table. Note that refno is required to keep unique names for
tables with multiple references to the same table, and generally, the fldnum is 1.

Surrogate Primary Key – As a rule, imported tables contain a single field named
ORIG_SYS_REF, which is used to hold the external value that uniquely identifies each
record. In some cases, however, the online CZ table has a primary key consisting
entirely of references to other tables. In this case, the surrogate primary key actually
consists of the foreign surrogate keys that correspond to the native foreign keys in the
online table.

4.2.4 Dependencies Among Import Tables
Dependencies among import tables must be heeded especially when custom
importing single tables. Table 4–2, "Foreign Surrogate Key" lists the column in the
import table whose value is dependent on the table listed in "Depends on". For
example, the FSK_ITEMTYPE_1_1 column in CZ_IMP_ITEM_MASTER gets its value
from CZ_IMP_ITEM_TYPE.NAME and helps in key resolution. FSK_ITEMTYPE_1_1
(default) is populated depending on the PK_USEEXPANSION indicator (0, 1, or 2) in
CZ_XFR_TABLES. See Section 5.2.7.3, "Populating Import Tables" on page 5-9 for the
order in which the CZ_IMP tables are populated.

A strong dependency means a value is required to successfully import that record. If
Default is YES, then there is a default value in that column and import succeeds even if
the dependency is strong and no value is imported. The following Table 4–2 lists the
dependencies.

Note: Oracle recommends that limited usage of FSK_***_EXT
columns as these columns will eventually be desupported.

Table 4–2 Dependencies Among CZ Schema Import Tables

Import Table Name Depends on Foreign Surrogate Key
Type of
dependency Default

CZ_IMP_DEVL_PROJECT CZ_IMP_INTL_
TEXT.TEXT_STR

FSK_INTLTEXT_1_1 STRONG NO

CZ_IMP_LOCALIZED_
TEXTS

CZ_IMP_DEVL_
PROJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT_1_1 STRONG N/A

CZ_IMP_ITEM_MASTER CZ_IMP_ITEM_
TYPE.NAME

FSK_ITEMTYPE_1_1 STRONG YES

CZ_IMP_ITEM_
PROPERTY_VALUE

CZ_IMP_
PROPERTY.NAME

FSK_PROPERTY_1_1 STRONG NO

CZ_IMP_ITEM_
PROPERTY_VALUE

CZ_IMP_ITEM_
MASTER.REF_PART_
NBR

FSK_ITEMMASTER_2_1 STRONG NO

CZ_IMP_ITEM_TYPE NO NO NO NO

CZ_IMP_ITEM_TYPE_
PROPERTY

CZ_IMP_ITEM_
TYPE.NAME

FSK_ITEMTYPE_1_1 STRONG NO

Control Tables

4-6 Oracle Configurator Implementation Guide

4.3 Control Tables
The control tables provide the mechanism for controlling what data is imported or
refreshed when populating the CZ schema import tables with data from outside
sources. The control table names are prefixed with CZ_XFR.

When running Oracle Configurator Populate and Refresh Configuration Models
Concurrent Programs, records in the CZ_XFR tables determine which import tables are
enabled for import, what data is imported, and how the data is imported.

The following tables control the import process at the table and field level:

■ CZ_XFR_FIELDS

■ CZ_XFR_PROJECT_BILLS

■ CZ_XFR_TABLES

The following tables contain import information:

■ CZ_XFR_RUN_INFOS

■ CZ_XFR_RUN_RESULTS

CZ_IMP_ITEM_TYPE_
PROPERTY

CZ_IMP_
PROPERTY.NAME

FSK_PROPERTY_2_1 STRONG NO

CZ_IMP_PROPERTY NO NO NO NO

CZ_IMP_PS_NODES CZ_IMP_INTL_
TEXT.TEXT_STR

FSK_INTLTEXT_1_1 STRONG NO

CZ_IMP_PS_NODES CZ_IMP_ITEM_
MASTER.ORIG_SYS_
REF

FSK_ITEMMASTER_2_1 STRONG NO

CZ_IMP_PS_NODES CZ_IMP_PS_
NODES.ORIG_SYS_
REF

FSK_PSNODE_3_1 STRONG N/A

CZ_IMP_PS_NODES CZ_PS_
NODES.PARENT_ID

FSK_PSNODE_4_1 STRONG N/A

CZ_IMP_PS_NODES CZ_IMP_DEVL_
PROJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT_5_1 STRONG NO

CZ_IMP_PS_NODES CZ_MODEL_REF_
EXPLS

FSK_EXPLNODE_1_1 STRONG N/A

CZ_IMP_PS_NODES CZ_PS_
NODES.REFERENCE_
ID

FSK_PSNODE_6_1 STRONG NA/

CZ_IMP_PS_NODES CZ_EFFECTIVITY_
SETS.EFFECTIVITY_
SET_ID

FSK_EFFSET_7_1 STRONG N/A

CZ_IMP_PS_NODES SRC_APPLICATION_
ID

FSK_ITEMMASTER_2_2 STRONG N/A

CZ_IMP_PS_NODES CZ_IMP_DEVL_
PROJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT_5_1 STRONG N/A

Table 4–2 (Cont.) Dependencies Among CZ Schema Import Tables

Import Table Name Depends on Foreign Surrogate Key
Type of
dependency Default

CZ_DB_SETTINGS Table

The CZ Schema 4-7

■ CZ_XFR_STATUS_CODES

CZ_XFR_TABLES identifies the mapping of the import table to the online table, as well
as the rules for importing data into the CZ schema.

 CZ_XFR_FIELDS identifies the transfer rules for the fields that are transferred during
the Populate or Refresh Configuration Models concurrent programs. Every field is
updated during import or refresh, but the update can be retracted by using the
NOUPDATE flag in the CZ_XFR_FIELDS table. If a field that is transferred does not
have an entry in the CZ_XFR_FIELDS table, then that field is updated.

For example, setting the NOUPDATE flag to 1 in the CZ_XFR_FIELDS table for CZ_
ITEM_MASTERS.DESC_TEXT, inhibits the updating of the Item Master description in
CZ_ITEM_MASTERS.DESC_TEXT when a Model is refreshed. Example 4–1 shows
how to set the field in the CZ_XFR_FIELDS table so that changes made to the BOM
Model’s Item description do not appear in Oracle Configurator Developer.

Example 4–1 Setting a value in the CZ_XFR_FIELDS Table

SQL> UPDATE CZ_XFR_FIELDS
 SET NOUPDATE = ’1’
 WHERE order_seq = 4
 AND dst_field IN (’DESC_TEXT’, ’REF_PART_NBR’);
SQL> COMMIT

4.4 CZ_DB_SETTINGS Table
The CZ_DB_SETTINGS table provides parameters that affect certain applications and
CZ schema processes.

Only one CZ_DB_SETTINGS table exists in a CZ schema.

4.4.1 Accessing the CZ_DB_SETTINGS Table
A user’s responsibility determines whether they can view or edit the CZ_DB_
SETTINGS table. A user must have the Oracle Configurator Administrator
responsibility to edit the CZ_DB_SETTINGS table through concurrent programs. For
more information, see Section C.1.1, "View Configurator Parameters" and
Section C.1.2, "Modify Configurator Parameters".

4.4.2 Organization of the CZ_DB_SETTINGS Table
The parameters in the CZ_DB_SETTINGS table are mapped to a particular section of
the CZ schema. The particular section is identified in the SECTION_NAME field and
contains relevant database parameters. The sections are:

■ IMPORT - Controls how BOM Model data is imported into the CZ schema

■ LogicGen - Governs how the Model’s logic is generated

■ ORAAPPS_INTEGRATE - Controls how Oracle Configurator integrates with other
Oracle Applications

■ SCHEMA - Sets general parameters that control the CZ schema

■ UISERVER - Governs the behavior of the runtime Oracle Configurator user
interface

Each parameter contains the following fields:

CZ_DB_SETTINGS Table

4-8 Oracle Configurator Implementation Guide

■ DATA_TYPE specifies the parameter’s datatype. All CZ_DB_SETTINGS values are
stored as VARCHAR2(255) in the VALUE field. If the DATA_TYPE is an integer,
then the Configurator converts the data in the VALUE field to an integer before
using it. For example, the Batchsize default value is stored as string 10000, but
Configurator interprets string 10000 as integer 10000.

■ SETTING_ID identifies the parameter.

■ VALUE is the parameter’s data. This value may be set during an installation or
upgrade of the database instance. The Oracle Configurator Administrator can
modify a value by running the Section C.1.2, "Modify Configurator Parameters"
concurrent program.

4.4.3 CZ_DB_SETTINGS Parameters
Some of the CZ_DB_SETTINGS parameter values are predefined during an
installation or upgrade of Oracle Configurator. The Oracle Configurator Administrator
can modify the values of these parameters by running the Section C.1.2, "Modify
Configurator Parameters" concurrent program. For information on running concurrent
programs, see Section B.1, "Running Configurator Concurrent Programs" on page B-1.
For specific information on modifying the parameters in the CZ_DB_SETTINGS table,
see Section C.1.2, "Modify Configurator Parameters" on page C-2. Table 4–3 lists the
parameters in the CZ_DB_SETTINGS table that can be modified.

Table 4–3 Settings in CZ_DB_SETTINGS Table

SETTING_ID
SECTION_
NAME

DATA_
TYPE Default VALUE

More
information
in...

AltBatchValidateURL ORAAPPS_
INTEGRATE

string n/a Section 4.4.3.1

BadItemPropertyValue IMPORT T/F F Section 4.4.3.2

BatchSize SCHEMA string 10000 Section 4.4.3.3

BOM_REVISION ORAAPPS_
INTEGRATE

string n/a Section 4.4.3.4

CommitSize IMPORT integer 500 Section 4.4.3.5

DISPLAY_INSTANCE_NAME UISERVER string n/a Section 4.4.3.6

FREEZE_REVISION SCHEMA string System setting Section 4.4.3.7

GenerateGatedCombo LogicGen YES/NO YES Section 4.4.3.8

GenerateUpdatedOnly LogicGen YES/NO YES Section 4.4.3.9

GenStatisticsBOM IMPORT YES/NO NO Section 4.4.3.10

GenStatisticsCZ IMPORT YES/NO NO Section 4.4.3.11

MAJOR_VERSION SCHEMA integer System setting Section 4.4.3.12

MaximumErrors IMPORT integer 10000 Section 4.4.3.13

MemoryBulkSize IMPORT integer 50000 Section 4.4.3.14

MINOR_VERSION SCHEMA string System setting Section 4.4.3.15

MULTISESSION IMPORT integer 0 Section 4.4.3.16

OracleSequenceIncr SCHEMA integer 20 Section 4.4.3.17

PsNodeName ORAAPPS_
INTEGRATE

string RefPartNbr Section 4.4.3.18

CZ_DB_SETTINGS Table

The CZ Schema 4-9

4.4.3.1 AltBatchValidateURL
AltBatchValidateURL allows the batch validation process to bypass the URL that is
normally used for batch validation. If Oracle Configurator uses Secured Sockets Layer
(SSL), then this value must be specified. The value must be the non-secure URL. For
additional SSL information, see Metalink, Oracle’s technical support Web site.

To insert the AltBatchValidateURL into the CZ_DB_SETTINGS table, use the SQL*Plus
INSERT statement shown in Example 4–2.

Example 4–2 Adding AltBatchValidateURL to CZ_DB_SETTINGS

INSERT INTO cz_db_settings (setting_id, section_name, data_type, valuem desc_text)
VALUES (’AltBatchValidateURL’,’ORAAPPS_
INTEGRATE’,4,’http://servername.com:8808/configurator/oracle.apps.cz.servlet.UiSer
vlet’,’Non-secure URL’)

4.4.3.2 BadItemPropertyValue
BadItemPropertyValue indicates the action that is taken when an Item’s PROPERTY _
VALUE in the CZ_IMP_ITEM_PROPERTY_VALUES table does not match the DATA_
TYPE in the CZ_PROPERTIES online table. The default value (F) forces the record to
be updated to include the PROPERTY_VALUE so that it is imported into the CZ_
ITEM_PROPERTY_VALUES online table. Table 4–4 lists the valid values for
BadItemPropertyValue setting and the disposition:

PublicationLogging ORAAPPS_
INTEGRATE

YES/NO NO Section 4.4.3.19

PublishingCopyRules ORAAPPS_
INTEGRATE

YES/NO YES Section 4.4.3.20

RefPartNbr ORAAPPS_
INTEGRATE

string CONCATENATED
_SEGMENTS

Section 4.4.3.21

ResolvePropertyDataType ORAAPPS_
INTEGRATE

YES/NO 1-integer,
2-decimal,
3-boolean, 4-text

Section 4.4.3.22

RestoredConfigDefaultModelLookupDate ORAAPPS_
INTEGRATE

string config_creation_
date

Section 4.4.3.23

Revision Date/User SCHEMA any string Section 4.4.3.24

RUN_BILL_EXPLODER ORAAPPS_
INTEGRATE

YES/NO YES Section 4.4.3.25

SuppressSuccessMessage UISERVER YES/NO NO Section 4.4.3.26

TimeImport IMPORT string Section 4.4.3.27

UI_NODE_NAME_CONCAT_CHARS ORAAPPS_
INTEGRATE

string n/a Section 4.4.3.28

UseLocalTableInExtractionViews IMPORT YES/NO NO Section 4.4.3.29

UtlHttpTransferTimeout SCHEMA integer n/a Section 4.4.3.30

Table 4–3 (Cont.) Settings in CZ_DB_SETTINGS Table

SETTING_ID
SECTION_
NAME

DATA_
TYPE Default VALUE

More
information
in...

CZ_DB_SETTINGS Table

4-10 Oracle Configurator Implementation Guide

4.4.3.3 BatchSize
BatchSize indicates the number of records that are modified before committing a
transaction in batch operations. The BatchSize setting is also used during a purge
operation.

Ordinarily a database stored procedure runs as a single transaction that is considered
pending until the calling operation commits the transaction. The pending changes are
lined up in a rollback segment. If the calling operation is cancelled, then the
transaction is rolled back. If the calling operation encounters an error, then the
pending changes in the rollback segment are discarded. However, some batch
operations, such as import, can involve many more records than the database can
handle as a single transaction. If the transaction is too big, then the database fails an
operation with a rollback-segment error. To avoid a rollback_segment error, import
and other batch-like operations count up the modified records in the database and
when the count matches the BatchSize value, the operation commits the transaction
and resets the counter. Every record is not committed individually because it is
considerably more economical to commit many updates at once.

4.4.3.4 BOM_REVISION
BOM_REVISION indicates the BOM revision in the Oracle Applications database from
which data is being imported into the CZ schema. This setting is checked to ensure
that the correct date format is used in the call to the BOM Model explosion procedure.

The value of BOM_REVISION is the Oracle Applications revision number. Valid
values are 5.0.628 for Release 10.7, 11.0.28 for Release 11.0, and 11.5.0 for Release 11i. If
the value is null (default), then 11.5.0 is used. The call to the BOM Model explosion
procedure checks up to the second decimal point of this value.

If the value is 11.5.n, then the 11i date format YYYY-MM-DD is used. Otherwise,
DD/MON/RR is used for Release 10.7 or 11.0.

4.4.3.5 CommitSize
CommitSize indicates the number of import records in each database transaction
between commits. CommitSize has the same purpose as BatchSize. for more
information, see Section 4.4.3.3, "BatchSize". CommitSize is used during import.

4.4.3.6 DISPLAY_INSTANCE_NAME
DISPLAY_INSTANCE_NAME determines whether an Instance Name column appears
in the Oracle Configurator Summary page. Oracle Configurator checks this setting
only if multiple instances of one or more components exist in the configuration.

Table 4–4 Valid Values for the BadItemPropertyValue Setting

Value Disposition

R Reject the record in the import table and use the old PROPERTY_VALUE

F Force the record to be updated to include the PROPERTY_VALUE from the
import table

K Update all information in the record except the Item PROPERTY_VALUE

X Reject the record and logically delete any matching Item property value
record in the CZ_ITEM_PROPERTY_VALUES table. The Item property value
defaults to the property default value in the CZ_ITEM_PROPERTY_VALUES
table.

CZ_DB_SETTINGS Table

The CZ Schema 4-11

If DISPLAY_INSTANCE_NAME is set to TRUE and at least one component in the
configuration has multiple instances, then the Instance Name column appears and
displays the name of each instance.

If DISPLAY_INSTANCE_NAME is set to FALSE or there are no components with
multiple instances in the configuration, then the Instance Name column does not
appear. If set to False but there are multiple instances in the configuration, then
instance names appear in the Description column (instead of each Item’s description).

4.4.3.7 FREEZE_REVISION
FREEZE_REVISION indicates the revision number at the freeze stage. This parameter
is used to capture the revision levels for the implementation of database package
bodies and views. For example, if a table is tuned to improve performance, but the
fields and the data returned are the same, then there is no need to change the MAJOR_
VERSION or MINOR_VERSION but the FREEZE_REVISION value reflects the
reworked view. This setting is read-only and populated when applying a patch.

4.4.3.8 GenerateGatedCombo
GenerateGatedCombo determines how a FALSE logic state is propagated in Explicit
Compatibility, Property-based Compatibility and Design Chart Rules. See the Oracle
Configurator Developer User’s Guide for additional information about Gated
Combinations.

4.4.3.9 GenerateUpdatedOnly
GenerateUpdatedOnly set to YES, causes logic generation to skip all referenced
Models whose logic is up-to-date. GenerateUpdatedOnly set to NO causes the logic of
all referenced Models to be generated even if their logic is up-to-date.

4.4.3.10 GenStatisticsBOM
GenStatisticsBOM set to YES forces the optimizer to update the internal statistics on
the BOM_EXPLOSIONS table before running queries in the CZ schema. Generating
statistics allows the optimizer to choose a better execution plan based on the current
data structure in a table.

4.4.3.11 GenStatisticsCZ
GenStatisticsCZ set to YES forces the optimizer to update the internal statistics on the
entire CZ schema before running queries in the CZ schema. Generating statistics
allows the optimizer to choose a better execution plan based on the current data
structure in a table.

4.4.3.12 MAJOR_VERSION
MAJOR_VERSION indicates the major version label for the CZ schema. This setting is
read-only and is populated when upgrading the schema.

4.4.3.13 MaximumErrors
MaximumErrors indicates the limit of errors allowed before an import run is
terminated. If you have a large amount of data to import, or you are not concerned
with the process stopping once a certain number of errors is reached, then set this
parameter to an extremely large number.

CZ_DB_SETTINGS Table

4-12 Oracle Configurator Implementation Guide

4.4.3.14 MemoryBulkSize
MemoryBulkSize regulates the memory usage of import. The smaller the setting, the
less memory is required for import. This number is used during import for the cz_
ps_nodes extraction procedure for specifying the number of records that are
processed in the same pass. If the value entered is less than the total number of records
to be imported, then the specified number of records is loaded and processed, and
then the next group of records is loaded and processed. If there is no value entered,
then the MemoryBulkSize is set to 10000000.

4.4.3.15 MINOR_VERSION
MINOR_VERSION indicates the minor version label for the CZ schema. This value is
read-only and is populated when applying a patch. The MINOR_VERSION does not
change during a particular family pack release.

4.4.3.16 MULTISESSION
MULTISESSION indicates the way in which a new import session interacts with other
import sessions.

■ A positive value indicates the number of seconds to wait while another import
session is running. The current state is checked every second. After the number of
seconds has elapsed, control goes to the waiting import session if no other session
is active, or an exception is raised if another import session is still running.

■ A value of 0 means do not wait if another import session is running, and
immediately raise an exception if a session is already running.

■ A negative value means ignore other import sessions and run this import session
immediately without raising an exception. Setting this parameter to a negative
number is equivalent to disabling it. If a session is currently running and a new
import session begins, then the first session is not aborted and there is the risk of
data corruption.

When MULTISESSION is missing from the CZ_DB_SETTINGS table, it is equivalent to
the default 0.

If an import session is terminated, then the CZ_XFR_RUN_INFOS table may end up in
an inconsistent state with the value of COMPLETED something other than 1.

4.4.3.17 OracleSequenceIncr
OracleSequenceIncr indicates the number of primary-key values allocated by each use
of a sequence. The default setting means that keys are assigned in increments of 20.
Both runtime Oracle Configurator and Configurator Developer ask for a sequence
value once, and then manage the sequence value minus 1 in memory. When the block
is used up, runtime Oracle Configurator and Configurator Developer again call for a
sequence value. Keeping the default value at 20 saves round trips to the database.

4.4.3.18 PsNodeName
PsNodeName indicates the source field to be loaded into the NAME field in the CZ_
PS_NODES table. The source field is either the RefPartNbr or the DESCRIPTION field
in the MTL_SYSTEM_ITEMS table. RefPartNbr is the default so that the name loaded

Warning: Changing the default OracleSequenceIncr setting of 20 is
likely to have adverse effects. The value of OracleSequenceIncr should
not be modified.

CZ_DB_SETTINGS Table

The CZ Schema 4-13

into the Model structure in Oracle Configurator Developer matches the name in CZ_
ITEM_MASTERS.

4.4.3.19 PublicationLogging
PublicationLogging indicates whether a trace of the publication process is logged in
the CZ_DB_LOGS table. The trace is helpful for debugging purposes and can be
viewed in the log file. For more information about viewing log files, see Section B.6,
"Viewing Log Files" on page B-4.

4.4.3.20 PublishingCopyRules
PublishingCopyRules indicates whether or not configuration rules are copied during
publishing. If PublishingCopyRules is set to NO, then only Configurator Extension
rules are copied during publishing. The publishing process is faster when
PublishingCopyRules is set to NO.

If the PublishingCopyRules is set to YES, then all rules are copied and both the source
and published Models have the same rules.

4.4.3.21 RefPartNbr
RefPartNbr identifies the source fields that are loaded from the MTL_SYSTEM_ITEMS
table into CZ_ITEM_MASTERS.REF_PART_NBR. This is a segment from the System
Item key flexfield definition.

RefPartNbr determines what name is displayed for each imported Model structure
node. The default value ’CONCATENATED_SEGMENTS’ enables the BOM Model
import process to construct BOM Model node names using multi-segment part
numbers.

When RefPartNbr is set to ’SEGMENT1’, only MTL_SYSTEM_ITEMS.SEGMENT1 is
the source of the node names in the imported Model structure. If you want to use only
the first segment of a part number as the node name, the Oracle Configurator
Administrator must manually set RefPartNbr to ’SEGMENT1’ by running the Modify
Configurator Parameters concurrent program.

Any value for RefPartNbr other than ’CONCATENATED_SEGMENTS’ or
’SEGMENT1’ causes the import process to retrieve the value of the DESCRIPTION
column from MTL_SYSTEM_ITEMS and displays the Item description as the node
name in Configurator Developer.

Note: Setting 'PublishingCopyRules' to 'NO' only affects you if
changes are made to logic generation that are incompatible with
previous versions of Oracle Configurator. If the rules for a published
Model are not copied, then you cannot generate logic for the
published Models. Using the NO setting requires republishing all
published Models.

Warning: Examine MTL_SYSTEM_ITEMS_VL.
CONCATENATED_SEGMENTS to verify that the field is correctly
populated. If the field is incorrectly populated, then the entry in
Oracle Inventory may be wrong. If the entry is correct, check CZ_
IMP_ITEM_MASTER.REF_PART_NBR to see that the value is the
same as that in MTL_SYSTEM_ITEMS_VL. CONCATENATED_
SEGMENTS.

CZ_DB_SETTINGS Table

4-14 Oracle Configurator Implementation Guide

Concatenated segments, including separators, must not exceed 1000 characters, which
is the limit of the CZ_PS_NODES.NAME field. Any description longer than 1000
characters is truncated. The default separator is a dot (.). Other valid separators are |,
-, or a custom value. See the Oracle Inventory User’s Guide for more information about
setting up part numbers.

You can enter multi-segment Items in the From Item and To Item input fields when
you run either the Populate or Refresh Configuration Models concurrent program. You
must include any separators that exist in the Item’s part number when you enter
multi-segment Item names.

4.4.3.22 ResolvePropertyDataType
ResolvePropertyDataType controls whether Item Catalog Descriptive Elements are
imported into Configurator Developer as Item Properties with a data type of Text or
Decimal Number. If the value for this setting is NO, all imported Item Properties have
a data type of Text in Configurator Developer.

If the value of this setting is YES, then all Descriptive Elements whose value is a
number are imported as Item Properties and have a data type of Decimal Number. All
Descriptive Elements whose value is text (for example, Weight) have a data type of
Text.

If ResolvePropertyDataType is null, then all Descriptive Elements are imported into
Configurator Developer as Item Properties with a data type of Text.

Table 4–5 illustrates how ResolvePropertyDataType affects how Descriptive Elements
values are imported into Oracle Configurator Developer.

Item Property is a protected field in the CZ schema (the NOUPDATE flag is set during
import). Once you import a BOM Model, you cannot change an Item Property’s data
type simply by modifying the ResolvePropertyDataType setting and then refreshing
the BOM Model.

4.4.3.23 RestoredConfigDefaultModelLookupDate
RestoredConfigDefaultModelLookupDate setting controls which publication Oracle
Configurator uses on an order when called from Order Management. If this setting is

Warning: When updating an existing Model in Configurator
Developer to use multi- segment part numbers, you must either
reimport or refresh the BOM Model. Confirm that the BOM Model
is getting re-exploded during import. The CZ_DB_
SETTINGS.RUN_BILL_EXPLODER should be Yes.

Table 4–5 ResolvePropertyDataType Setting

ResolvePropertyDataType
Setting

Item Catalog Descriptive
Element Value

Data Type in Oracle
Configurator Developer

YES 15 Decimal Number

YES Length Text

NO 15 Text

YES Length Text

null ’Length’ or ’15’ Text

CZ_DB_SETTINGS Table

The CZ Schema 4-15

config_creation_date, then Oracle Configurator uses the order line creation date. If this
setting is null, then Oracle Configurator uses sysdate.

For more information, see DEFAULT_RESTORED_CFG_DATES on page 17-37.

4.4.3.24 Revision Date and User
Revision Date and User is read-only and documents the date and time at which the CZ
schema was last upgraded, and the username of the user who performed the task.

4.4.3.25 RUN_BILL_EXPLODER
RUN_BILL_EXPLODER is a YES/NO flag (default=YES) that indicates whether the
Oracle Applications Bills of Material exploder should be run on each bill that is
marked for import in the CZ_XFR_PROJECT_BILLS table in the CZ schema at the time
of import. See Chapter 5, "Populating the CZ Schema" for more information on
exploding a BOM Model.

The Oracle Configurator Populate or Refresh Configuration Models concurrent
programs load bills and Items based on top bills listed in the CZ_XFR_PROJECT_
BILLS table in the CZ schema. Before extracting, if the RUN_BILL_EXPLODER setting
is set to YES, then the procedure calls the BOM Model exploder to refresh data in
BOM_EXPLOSIONS for each record in the CZ_XFR_PROJECT_BILLS table. If RUN_
BILL_EXPLODER is set to NO, then the concurrent program transfers the BOM
Models that are flagged for import in the CZ_XFR_PROJECT_BILLS table without
running the BOM Model exploder first.

CZ_INTL_TEXTS contains the text string from the DESCRIPTION field in the BOM_
EXPLOSIONS table for each imported BOM Model structure node.

The Oracle Configurator SQL*Plus scripts and concurrent programs target all or a
subset of BOM Models exploded in the BOM_EXPLOSIONS table in the Oracle
Applications database. Selected BOM Model Items come from the BOM_BILL_OF_
MATERIAL and the BOM_INVENTORY_COMPONENTS tables.

4.4.3.26 SuppressSuccessMessage
The SuppressSuccessMessage setting affects runtime Oracle Configurator behavior by
suppressing messages that would normally be shown. The setting determines whether
a message is displayed after fixing a validation error.

If SuppressSuccessMessage is set to NO, then after fixing a validation error a runtime
success message is displayed. If SuppressSuccessMessage is set to YES, then after
fixing a validation error a runtime success message is not displayed.

To insert SuppressSucessMessage into CZ_DB_SETTINGS, use the SQL*Plus INSERT
statement shown in Example 4–3.

Example 4–3 Adding SuppressSuccessMessage to CZ_DB_SETTINGS

INSERT INTO cz_db_settings (setting_id, section_name, data_type, value, desc_
text) VALUES (’SuppressSuccessMessage’,’UISERVER’,4,
’No’,’Runtime display of success messageS’)

Note: The Populate or Refresh Configuration Models concurrent
programs do not explode BOM Models when importing from a
remote server. See Section 5.2.6, "Exploding BOM Models in Oracle
Applications" on page 5-8 for details.

CZ_DB_SETTINGS Table

4-16 Oracle Configurator Implementation Guide

4.4.3.27 TimeImport
TimeImport enables the collection of timing information during import.

4.4.3.28 UI_NODE_NAME_CONCAT_CHARS
UI_NODE_NAME_CONCAT_CHARS sets the concatenation character that is used
when generating UI captions using both the node name and description. The default
concatenation character separating each text string is a comma surrounded by two
spaces. (For example: "AT62431 , Sentinal Custom Laptop"). The Oracle Configurator
Administrator can change the concatenation character that separates each string by
running the Modify Configurator Parameters concurrent program.

4.4.3.29 UseLocalTableInExtractionViews
UseLocalTableInExtractionViews is a YES/NO flag. If
UseLocalTableInExtractionViews is set to YES, then definitions of some import
extraction views include the DUAL table in the join. The
UseLocalTableInExtractionViews setting is ignored if the import source server is local.

4.4.3.30 UtlHttpTransferTimeout
UtlHttpTransferTimeout allows modification of the timeout length that is used inside
the call to the UTL_HTTP.REQUEST procedure during batch validation. The value is
the number of seconds. Once the call completes, the timeout is set back to its original
value.

To insert UtlHttpTransferTimeout into the CZ_DB_SETTINGS, use the SQL*Plus
INSERT statement shown in Example 4–4.

Example 4–4 Adding UtlHttpTransferTimeout to CZ_DB_SETTINGS

INSERT INTO cz_db_settings (section_name, setting_id, data_type, value, desc_
text)
SELECT ’SCHEMA’, ’UtlHttpTransferTimeout’, 1, ’60’, ’HTTP timeout for batch
validation’
FROM DUAL WHERE NOT EXISTS
(SELECT NULL FROM cz_db_settings
WHERE section_name=’SCHEMA’
AND upper(setting_id)=’UTLHTTPTRANSFERTIMEOUT’);

Note: If you are importing or refreshing from a remote database
instance and the database instance is version 8i, then
UseLocalTableInExtractionViews must be set to YES. This is because
of an RDBMS bug. If this setting is not YES, then the following error
appears in the cz_db_logs table after running the Populate and
Refresh Configuration Models Concurrent Programs :"ORA-01025:
UPI parameter out of range"

Note: This functionality is available only in Oracle 9i and later.

Populating the CZ Schema 5-1

5
Populating the CZ Schema

This chapter reviews the various means by which data is inserted into the CZ schema,
with detailed explanations for:

■ Standard Import

■ Rule Import

■ Custom Import

For information about the CZ schema, see Chapter 4, "The CZ Schema".

5.1 Overview
Populating the CZ schema usually begins by importing data. There are three types of
data import:

■ Standard import of Oracle Applications BOM Models and Inventory data into the
CZ schema. For more information, see Section 5.2, "Standard Import" on page 5-3.

■ Rule import of legacy rules written in Constraint Definition Language (CDL)
format into the CZ schema. For more information, see Section 5.3, "Rule Import"
on page 5-16.

■ Custom import of data that is not handled by a standard import. For more
information, see Section 5.4, "Custom Import" on page 5-21.

Once the CZ schema is populated with imported data, that data is then available in
Oracle Configurator Developer and the runtime Oracle Configurator.

This section lists:

■ Types of Data Stored in the CZ Schema During Development and Runtime

■ Means of Populating the CZ Schema

■ CZ_IMP Tables

5.1.1 Types of Data Stored in the CZ Schema During Development and Runtime
The data stored in the CZ schema includes:

■ Configuration models:

– Item and Model structure data

– Configuration rules

– Customized User Interface (UI) Templates

– UI definitions

5-2 Oracle Configurator Implementation Guide

– Publication records

■ Configurations

■ Configurator Extension Archives

■ Oracle Configurator system settings

■ Oracle Configurator transfer information

See Section 5.1.2, "Means of Populating the CZ Schema" on page 5-2 for information on
how this data is inserted. See Section 5.2, "Standard Import" on page 5-3 for more
details about the specific kinds of Inventory and BOM Model data stored in the CZ
schema.

5.1.2 Means of Populating the CZ Schema
The CZ schema is populated with data by the following means:

■ Concurrent programs in Oracle Applications import Item and Model structure
data from outside sources into the CZ schema. For more information on preparing
data for import, see Section 5.2.4, "Preparing the Data for Import" on page 5-5. For
more information, see Section C.4, "Populate and Refresh Configuration Models
Concurrent Programs" on page C-11.

■ A concurrent program in Oracle Applications imports rules written in CDL format
into the CZ Schema. These rules may be legacy rules that are rewritten in CDL. For
more information on preparing rules for import, see Section 5.3.1, "Rule Import
Procedure" on page 5-16. For more information about the concurrent program, see
Section C.4.5, "Import Configuration Rules" on page C-15.

■ Custom programs load data transfer files into the CZ schema. For more
information see Section 5.4.2, "Identifying Data for a Custom Data Import" on
page 5-23.

■ Concurrent programs migrate Item and Model structure data from one CZ schema
into another CZ schema. For more information, see Chapter 6, "Migrating Data" on
page 6-1 and Section C.7, "Migration Concurrent Programs" on page C-20.

■ Configurator Extensions populate CZ table fields with configuration data that
cannot be directly inserted using the runtime Oracle Configurator. For more
information, see the Oracle Configurator Extensions and Interface Object Developer’s
Guide, and Section C.8, "Migrate Functional Companions" on page C-22.

■ End users select certain nodes of configuration models that pass configuration
attributes to the CZ schema. For more information, see the Oracle Configurator
Methodologies documentation.

■ Oracle Configurator Developer populates the CZ schema with configuration
model data, including rule, publishing, and UI definitions. For more information
on the information in the CZ schema, see the CZ eTRM on Metalink, Oracle’s
technical support Web site.

Note: When you submit an Oracle Applications concurrent request
to populate and refresh Models, the Model, any referenced Models,
and any referenced UI Content Templates must either be unlocked or
locked by you. For more information on locking, see the Oracle
Configurator Developer User’s Guide.

Standard Import

Populating the CZ Schema 5-3

■ Programmatic tools used to develop and maintain configuration models, and
deploy a runtime Oracle Configurator populate the CZ schema. For more
information, see Chapter 17, "Programmatic Tools for Development" and
Chapter 18, "Programmatic Tools for Maintenance".

5.1.3 CZ_IMP Tables
The CZ_IMP tables store imported data and keep track of the success or failure when
importing data into the CZ schema. The CZ_IMP tables correspond to the equivalent
CZ online tables. The imported data becomes available to Configurator Developer
when the Populate and Refresh Configuration Models Concurrent Programs or
Execute Populators in Model Concurrent Program, or a custom import moves the data
from the import tables into the corresponding online tables. Configurator Developer
and the runtime Oracle Configurator read the imported data from the CZ online
tables.

For example, when an Item in the CZ_ITEM_MASTERS table is imported into the CZ
schema, the Item data also appears in the CZ_IMP_ITEM_MASTER table. For a list of
tables that store imported data, see Section D.1.3. For more information about where
various kinds of data are stored in the CZ schema, see Chapter 4, "The CZ Schema"
and the CZ eTRM on Metalink, Oracle’s technical support Web site.

5.2 Standard Import
A standard import consists of transferring data from Oracle Applications Bills of
Material (Releases 10.7, 11.0, or 11i) to Oracle Configurator Release 11i. Figure 5–1
shows the data flow when importing a BOM Model.

Figure 5–1 Data Flow in the Import Process

When developing a configuration model, Oracle Configurator Developer accesses the
CZ schema, not the Oracle Applications Inventory and Bills of Material schemas.
However, when ordering Items that have been configured based on a configuration
model, the runtime Oracle Configurator accesses the CZ schema.

The CZ schema must contain an exact replication of the BOM Model’s structure, rules
and Item data. This exact replication is necessary to create configurations of BOM
Models that participate in downstream processes such as ordering.

This standard import section describes:

5-4 Oracle Configurator Implementation Guide

■ Inventory and BOM Data That Can Be Imported

■ Overall Standard Import Procedure

■ Determining the Import Data Source Instance and the Target Instance

■ Preparing the Data for Import

■ Defining and Enabling a Server for Import

■ Exploding BOM Models in Oracle Applications

■ Controlling the Data for Import

■ Importing the Data

■ Verifying the Data Import

■ Refreshing Imported Data

5.2.1 Inventory and BOM Data That Can Be Imported
A standard import involves importing Oracle Applications Inventory and BOM Model
data into the CZ schema. Specifically, the imported data is:

■ Bills of Material structure (ATO and PTO BOM Models)

■ Inventory data

■ ATO or PTO BOM Model rules:

– Optional or required

– Minimum and maximum quantity

– Mutually exclusive

– Quantity cascade

■ Attributes in Oracle Inventory such as Item Catalog Group, Catalog Descriptive
Elements and values

5.2.2 Overall Standard Import Procedure
The overall procedure for a standard import is:

1. Determine the import source and target (see Chapter 3, "Database Instances")

2. Prepare the data (see Section 5.2.4 on page 5-5).

3. If the import source is a remote database:

a. The Configurator Administrator must define and enable the source server for
import (see Section 5.2.5 on page 5-7).

b. Explode the BOM Models that you want to import (see Section 5.2.6 on
page 5-8).

4. Optionally identify specific data to be ignored during the import (see Section 5.2.7
on page 5-8).

5. Run the Populate and Refresh Configuration Models Concurrent Programs in
Oracle Applications to import the BOM Model’s data into the CZ Schema.

6. Verify that the data import succeeded (see Section 5.2.9 on page 5-12).

Standard Import

Populating the CZ Schema 5-5

7. If you re-import the same BOM Model from a different source, you must first
synchronize your BOM-based configuration models with the new source (see
Chapter 7, "Synchronizing Data" on page 7-1).

8. Because repeated data imports can result in large amounts of logically-deleted
Items in the CZ schema, run the Purge Configurator Tables concurrent programs
to improve database performance. For more information, see Section 8.3, "Purging
Configurator Tables" on page 8-1.

5.2.3 Determining the Import Data Source Instance and the Target Instance
The source of imported data is also called the import source or remote server. The
import source should be a production database. Oracle Configurator supports
importing BOM Model data from only one Oracle Applications database. This is
because the information used to refresh imported Oracle Applications BOM Models
can overlap among multiple Applications databases. See Section 5.2.5, "Defining and
Enabling a Server for Import" on page 5-7 for information about changing the import
source.

The target of the imported data is the database instance you have designated for
developing your BOM-based configuration model. You run the Populate and Refresh
Configuration Models Concurrent Programs in Oracle Applications in the target
database instance.

For more information about selecting or changing which database instance should
serve as import source and which should be the target, see Chapter 3, "Database
Instances" on page 3-1.

5.2.4 Preparing the Data for Import
For purposes of consistency with other processes in your business, use production
data. Preparing the data for standard import involves creating a BOM Model using
Oracle Inventory Items. Only Oracle Inventory Items that are associated with a BOM
Model in Oracle Bills of Material can be imported into the CZ schema. If you are
importing other data or data from non-Oracle Applications databases, see Section 5.4,
"Custom Import" on page 5-21. If you are importing rule data from non-Oracle
Applications databases or standalone rules, see Section 5.3, "Rule Import".

Determine which version of Oracle Applications is the import source. You can only
import BOM Models from Release 10.7, 11.0 and 11i to Release 11i. Standard import
requires that BOM Models be complete and identified at the top level. Identifying the
BOM Model at the top level insures that all child BOM Models are imported. If a BOM
Model is not complete, then a warning message is displayed. For information on
importing BOM Models with child BOM Models, and BOM Models with a Common
Bill, see Section 5.2.13, "BOM Model with a Common Bill".

To create a BOM Model in Oracle Applications, you must first define the Items (see
Section 5.2.4.1) and then their hierarchical relationship in a BOM Model (see
Section 5.2.4.2).

Note: Items for standard import must be defined in Oracle
Applications Inventory and then specified for inclusion in a BOM
Model in Oracle Bills of Materials.

5-6 Oracle Configurator Implementation Guide

5.2.4.1 Defining Inventory Items for Configuration
Begin data preparation by defining Inventory Items that can be used to build a BOM
Model and provide the Item data needed for implementing a configuration model.

If you are using Multiple Language Support (MLS), you should enter translated
descriptions of BOM Model Items before importing data to the CZ schema. See
Chapter 14, "Multiple Language Support" on page 14-1.

In Oracle Applications Inventory:

■ Define the Items of your BOM Model and specify a BOM Item Type of Standard,
Option Class, or Model for each Item.

■ Select the Inventory Item check box to make each Item both configurable and
orderable.

■ Select the BOM Allowed check box if the Item can be assigned as a component on
a BOM Model or can be used to create a BOM Model.

■ Assign Item Catalog Groups and Descriptive Elements to Items for which you
want imported Properties in Configurator Developer.

■ Indicate whether the Items that you want to be a BOM Model are a Pick To Order
(PTO) or Assemble To Order (ATO).

■ Select the OM Indivisible check box if Item quantities should be treated as
integers (see Section 5.2.7.6 on page 5-10).

BOM Item Type determines whether an Item can be a component in a bill of materials,
may contain child components, or can also be a BOM Model. A BOM Option Class
typically contains one or more Standard Items. See Section 5.2.7.6 on page 5-10 for
details about importing Standard Item quantities as integers or decimals. For more
information on Standard Items, see the Oracle Bills of Material User’s Guide.

Any Item that is defined as a Model in Oracle Inventory and exists as a component in
another BOM Model (for example, a PTO BOM Model that contains an ATO BOM
Model), must also be defined as a BOM Model in Oracle Bills of Material to be
imported into the CZ schema.

When an Item is a component of a PTO or ATO BOM Model and at the same time is
the parent of other component Items, the BOM Allowed check box must be selected
for that Item. When a Standard Item is defined this way, it can be a "kit" containing
other Standard Items. Standard Items included in a kit are always required
(mandatory); they are never optional. The BOM Allowed check box must be selected
for all of the component Items within the kit.

Item Catalog Descriptive Element values do not have a data type in Oracle Inventory.
When you import BOM Model data into the CZ schema, Descriptive Elements become
Item Properties. These Item Properties have a data type of Text, or Decimal Number.

By default, the Descriptive Element’s value is imported as a decimal number if the
value is a number; otherwise, the value is imported as text. However, you can modify
how these values are imported using the ResolvePropertyDataType setting in the CZ_
DB_SETTINGS table. For details, see Section 4.4.3.22, "ResolvePropertyDataType" on
page 4-14.

For more information about imported BOM Models and Properties, see the Oracle
Configurator Developer User’s Guide.

For more information about defining Items, see the Oracle Inventory User’s Guide.

Standard Import

Populating the CZ Schema 5-7

5.2.4.2 Creating BOM Models for Configuration
After defining Inventory Items, you must continue in Bills of Material to create the
BOM Model.

■ Select an Inventory Item that has a BOM Item Type of Model, and add other BOM
Models, Option Class Items, and Standard Items as components within the BOM
Model.

■ In a multiple organization supply chain implementation, set the Item attributes
Check ATP and ATP Components to control the extent of the search made by
Global Order Promising for available-to-promise inventory.

For more information about the Check ATP and ATP Components settings, see
the Oracle Advanced Supply Chain Planning and Oracle Global ATP Server User’s
Guide.

■ Specify attributes for each component in the bill, such as whether a BOM Model or
BOM Option Class contains Mutually Exclusive Items and whether the
component is required.

When the Mutually Exclusive option is selected, the optional child components of that
Option Class mutually exclude one another based on the minimum and maximum
number of components allowed in a valid configuration.

Required Items do not participate in the configuration process and therefore are not
imported into the CZ schema. (An exception is when a required component contains
optional components; in this case, it is imported into the CZ schema). Required Items
are added automatically to the configured work order by the AutoCreate
Configuration Items concurrent program.

For more information about creating a BOM Models, see the Oracle Bills of Material
User’s Guide.

5.2.5 Defining and Enabling a Server for Import
The local database instance is the default import server, meaning if you do not
specifically enable a server for import, the database instance in which you run the
import is used as the source.

If you are transferring data to the CZ schema from a Bills of Material schema in a
different database instance, you must define that import source as a remote server. See
Section B.4, "Server Administration" on page B-3 for information about defining and
enabling a remote server. Several servers can be defined and enabled, but only one
server is Import Enabled.

If you need to define and enable a remote server for import, you must first submit a
Modify Server Definition concurrent request to disable the local server for import, and
then define and enable the remote server where the import source data is stored. To
run this concurrent program, see Section C.2.5, "Modify Server Definition" on
page C-8.

Oracle requires that you define only one server for import. If an import server is
changed after BOM Models have been imported, then the configuration models must
be synchronized to the BOM Models on the new import server. For details on
synchronizing the configuration models with the BOM Models on the newly defined
remote server, see Section 7.2.1, "The BOM Model Synchronization Process" on
page 7-2.

5-8 Oracle Configurator Implementation Guide

5.2.6 Exploding BOM Models in Oracle Applications
Prior to importing or refreshing a BOM Model into the CZ schema from Bills of
Material (Releases 10.7, 11.0, or 11i) in another instance (remote server), you must
explode the BOM Model.

The following sections explain how to explode a BOM Model in different releases of
Oracle Applications.

5.2.6.1 Exploding a BOM Model in Release 11i
To explode a BOM Model in Oracle Applications, Release 11i:

1. Log in to Oracle Applications using the appropriate username and password.

2. Select the Order Management responsibility.

3. Select Orders, Returns > Sales Orders.

4. Enter all required data in the Main tabbed region.

5. Click the Line Items tabbed region.

6. On the Order Line, select the root Model that you want to import into Oracle
Configurator from the Item list of values. This is the same Model that you select
when creating a new object in Oracle Configurator Developer or running the
Populate Configuration Models concurrent program in Oracle Applications.

The BOM Model explosion process is called recursively for as many levels as
necessary in the root Model.

7. Enter 1 in the Qty field, then click Configurator.

8. After all the BOM Model’s components are displayed, click Cancel to close the
Configurator page.

5.2.6.2 Exploding a BOM Model in Release 10.7 or 11.0
To explode a BOM Model in Oracle Applications, Release 10.7 or 11.0:

1. Log in to Oracle Applications using the appropriate username and password.

2. Select the Order Entry responsibility.

3. Navigate to the Sales Orders page, enter all required fields.

4. On the Order Line, select the Model that you want to import into Oracle
Configurator from the Item list of values. This is the same Model that you select
when creating a new object in Oracle Configurator Developer or running the
Populate Configuration Models concurrent program in Oracle Applications.

5. Enter 1 in the Qty field, then click Configurator.

6. After all the BOM Model’s components are displayed, select Cancel to close the
Configurator page.

7. Repeat steps 1 through 6 for each BOM Model that you want to import into the CZ
schema.

5.2.7 Controlling the Data for Import
Controlling data import involves identifying or customizing what data gets imported.

To do this you run concurrent programs to set the values in the CZ_XFR_ control
tables in the CZ schema that control import. For more information about the control

Standard Import

Populating the CZ Schema 5-9

tables, see Control Tables on page 4-6. See Section 5.2.8, "Importing the Data" on
page 5-11 for information about identifying what data gets imported.

5.2.7.1 Importing Data Into Specific Tables
When you import data, you must be aware of the dependencies between the import
tables. For more information, see Table 4–2, " Dependencies Among CZ Schema
Import Tables" on page 4-5.

You may want to specify only a group of tables from which extracted data is loaded
into the import tables. The CZ_XFR_TABLES.DISABLED field determines whether a
specific table is enabled or disabled for import.

For general information on running concurrent programs, see Running Configurator
Concurrent Programs on page B-1. For details on importing data into specific tables,
see Section C.9.3, "Select Tables to be Imported" on page C-26.

In Oracle Applications, you can also display the current tables to be imported by
selecting the concurrent program, Show Tables to be Imported. For more information,
see Section C.9.4, "Show Tables to be Imported" on page C-27.

5.2.7.2 Importing Data from Specific Fields
You can customize which fields in the tables listed in CZ_XFR_TABLES are extracted
and imported. See the CZ eTRM on Metalink, Oracle’s technical support Web site for
more information about CZ_XFR_TABLES and other control tables.

There is no concurrent program to complete this customization. Modification of
specific fields can only be accomplished by using SQL.

5.2.7.3 Populating Import Tables
The import tables below are listed in the order in which the concurrent programs and
SQL*Plus import procedures populate them. This order must not be modified.

■ CZ_IMP_ITEM_TYPE

■ CZ_IMP_PROPERTY

■ CZ_IMP_ITEM_TYPE_PROPERTY

■ CZ_IMP_ITEM_MASTER

■ CZ_IMP_ITEM_PROPERTY_VALUE

■ CZ_IMP_DEVL_PROJECT

■ CZ_IMP_LOCALIZED_TEXTS

■ CZ_IMP_PS_NODES

5.2.7.4 Modifying EXPLOSION_TYPE
You can modify the CZ_XFR_PROJECT_BILLS.EXPLOSION_TYPE field for previously
imported bills to indicate how the BOM Model exploder should handle standard
Items. The possible values for this field are OPTIONAL (default), ALL, or INCLUDED.
The EXPLOSION_TYPE refers to whether the component is mandatory (ALL or
INCLUDED) or optional (OPTIONAL). See the CZ eTRM on Metalink, Oracle’s
technical support Web site for more information about CZ_XFR_PROJECT_BILLS and
other control tables.

5-10 Oracle Configurator Implementation Guide

5.2.7.5 Identifying a BOM Model for Import
CZ_XFR_PROJECT_BILLS.TOP_ITEM_ID is the Oracle Inventory identifier of the
BOM Model imported into the CZ schema. Every imported BOM Model must be
represented in CZ_XFR_PROJECT_BILLS.

The TOP_ITEM_ID and ORGANIZATION_ID for each imported BOM Model are read
from the CZ_XFR_PROJECT_BILLS table. The PS_NODE import updates the CZ_
XFR_PROJECT_BILLS table with the timestamp, ID, and description of the most recent
import.

The ORGANIZATION_ID also identifies which BOM Models are imported. Oracle
Configurator uses the ORGANIZATION_ID when adding a configured line Item in
Order Management. An order line is only valid if it contains the ORGANIZATION_ID
that corresponds to the ORGANIZATION_ID on BOM Model Items in Oracle
Applications.

For detailed information about the control tables, see the CZ eTRM on Metalink,
Oracle’s technical support Web site.

5.2.7.6 Importing Decimal or Integer Quantities
During import, CZ_PS_NODES.DECIMAL_QTY_FLAG is set to 1 if all of the
following conditions are true:

■ The BOM Model component is a Standard Item (CZ_IMP_PS_NODES.BOM_
ITEM_TYPE=4 or CZ_PS_NODES.PS_NODE_TYPE=438)

■ The corresponding Oracle Inventory Item has MTL_SYSTEM_
ITEMS.INDIVISIBLE_FLAG=’N’ or ’NULL’

■ The Model containing the Standard Item is an ATO Model (that is, CZ_DEVL_
PROJECTS.MODEL_TYPE=’A’)

■ The profile option CZ: Populate Decimal Quantity Flags is set to 1 (Yes)

CZ_PS_NODES. DECIMAL_QTY_FLAG is set to false if the imported Model Item is
an Option Class, the Standard Item’s parent is not an ATO Model, or the CZ: Populate
Decimal Quantity Flags is set to No. Only Standard Items within ATO BOM Models
support decimal quantities. Models, Option Classes and Standard Items within PTO
BOM Models do not support decimal quantities.

You can specify whether Items are imported as integers or decimals using the profile
option CZ: Populate Decimal Quantity Flags. The CZ: Populate Decimal Quantity
Flags profile option specifies whether and how the MTL_SYSTEM_
ITEMS.INDIVISIBLE_FLAG for an Item should determine the value of the DECIMAL_
QTY_FLAG column in both CZ_ITEM_MASTERS and CZ_PS_NODES.

■ If the profile option is set to No, then import populates the DECIMAL_QTY_FLAG
column in both CZ_ITEM_MASTERS and CZ_PS_NODES with a value of 0.

■ If the profile option is set to Yes, then the value of MTL_SYSTEM_
ITEMS.INDIVISIBLE_FLAG for an Item determines the value of the DECIMAL_
QTY_FLAG column in both CZ_ITEM_MASTERS and CZ_PS_NODES.

■ If INDIVISIBLE_FLAG is 0 or NULL, then DECIMAL_QTY_FLAG in both
tables is set to 1, which means that decimal quantities are allowed.

■ If INDIVISIBLE_FLAG is 1, then DECIMAL_QTY_FLAG in both tables is set
to 0, which means that decimal quantities are not allowed. The minimum,
maximum, and quantity are rounded during import. If the result of the
rounding causes the minimum to be greater than the default or the maximum,
then an error is returned.

Standard Import

Populating the CZ Schema 5-11

■ If INDIVISIBLE_FLAG is 0 and a node cannot support decimal quantities
based on the new restrictions, then any decimal values that occur in a BOM
Model are rounded. This includes child Models and Option Classes within
PTO Models.

If you change the profile option from No to Yes, then you must refresh all existing
Models so they reflect the decimal quantity setting for each Oracle Inventory Item. You
must also republish any existing publications.

For general information about using CZ: Populate Decimal Quantity Flags, see the
Oracle Configurator Installation Guide.

See the Oracle Configurator Developer User’s Guide for additional information on the
impact of decimal quantities on configuration models and rules. For information about
how decimal quantities affect the CIO, see the Oracle Configurator Extensions and
Interface Object Developer’s Guide.

5.2.7.7 Importing Minimum and Maximum Instances
The first time a BOM Model is imported, the minimum and maximum Instance setting
is 1. Subsequently, the BOM Model’s minimum and maximum Instance may be
changed in Oracle Configurator Developer, but refreshing the BOM Model does not
override the minimum and maximum Instance values. The minimum and maximum
Instance settings can only be set on a referenced BOM Model, never on the root Model.
Refreshing the BOM Model does update the Quantity. For more information on
refreshing Model data, see Section 5.2.10, "Refreshing Imported Data" on page 5-12.

5.2.8 Importing the Data
Data can be imported into the CZ schema by:

■ Running the Populate and Refresh Configuration Models Concurrent Programs in
Oracle Applications. These concurrent programs import BOM Model structure
(ATO, PTO Models, structure and rules) and require that the BOM Models be
complete and identified at the specified root. For more information, see
Section C.4, "Populate and Refresh Configuration Models Concurrent Programs"
on page C-11.

■ Running the Import Configuration Rules concurrent program in Oracle
Applications. This concurrent program imports rules written in CDL format into
the CZ schema. For more information about rule import, see Section 5.3, "Rule
Import" on page 5-16.

■ Customizing your data import to run or suppress the transfer of some data. For
more information, see Section 5.2.7, "Controlling the Data for Import" on page 5-8.

■ Running the PL/SQL IMPORT_SINGLE_BILL procedure. For more information,
see IMPORT_SINGLE_BILL in Section 18.4.3, "Procedures and Functions in the
CZ_modelOperations_pub Package" on page 18-7.

Warning: Not all Oracle Applications that are integrated with
Oracle Configurator support decimal quantities for BOM Model
Standard Items. Additionally, Oracle Configurator offers limited
support for using decimal quantities. See specific product
documentation and Metalink to find out whether an application
supports decimal quantities.

5-12 Oracle Configurator Implementation Guide

■ Running the PL/SQL REFRESH_SINGLE_MODEL procedure. For more
information, see REFRESH_SINGLE_MODEL in Section 18.4.3, "Procedures and
Functions in the CZ_modelOperations_pub Package" on page 18-7.

If you are not importing from the same remote (import) server from which you
originally imported the BOM Models, then you must synchronize your BOM-based
configuration models with the BOM Models on the new import server. For more
information, see Chapter 7, "Synchronizing Data" on page 7-1.

Imported BOM Models are read-only in Oracle Configurator Developer, although you
can add Properties, create additional Model structure, and define rules when defining
your BOM-based configuration model.

See Section 5.2.11, "Importing a BOM Model That Contains Other BOM Models" on
page 5-13 and the Oracle Configurator Developer User’s Guide for the specific results in
Oracle Configurator Developer when importing BOM Models.

5.2.9 Verifying the Data Import
After you import data into the CZ schema, view the Item Master and updated
Model(s) in Oracle Configurator Developer. All Items imported into the CZ schema
are displayed in the Oracle Configurator Developer Item Master. All imported CDL
rules are displayed in either the Model’s Configuration Rules folder or the folder that
you specify in CZ_IMP_RULES.FOLDER_ID. All imported rules appear as Statement
Rules. Imported BOM rules as mentioned in Section 5.2.1, "Inventory and BOM Data
That Can Be Imported" do not appear in the Model’s Configuration Rules folder. For
more information on importing rules, see Section 5.3, "Rule Import" on page 5-16.

The status of the import can be determined by examining the DISPOSITION field in
the CZ_IMP tables. For more information about the DISPOSITION field see Table 4–1,
" Import Control Fields" on page 4-3.

5.2.10 Refreshing Imported Data
When changes are made in a production instance, it is necessary that the Models in the
development instance be refreshed so that they reflect the changes. Refreshing
configuration models only refreshes the data on the development CZ schema (target
database instance).

Oracle Configurator’s Refresh All Imported Configuration Models concurrent
program updates all configuration models in the development CZ schema with
changes that have been made in the production CZ schema. When you refresh BOM
Models that have submodels, all changes that were made in the BOM Model and its
submodels are reflected in Oracle Configurator Developer.

The refresh concurrent programs ensure that existing production data, such as saved
configuration data, is preserved. The procedures that perform the refresh prevent
customer-specific groups of fields in the CZ schema from being altered or nulled out
even when other fields in the row are replaced during a refresh request. After the
Refresh All Imported Configuration Models or Refresh a Single Configuration Model
concurrent program is run, the Models must be republished to the production CZ
schema. See Chapter 16, "Publishing Configuration Models" and the Oracle
Configurator Developer User’s Guide for additional publishing information.

Standard Import

Populating the CZ Schema 5-13

5.2.10.1 Refreshing Imported Data Recommendations
Oracle recommends that you limit changes to the source data during construction of a
configuration model to avoid potential problems introduced by interim data imports
and updates. Oracle suggests that unit testing be completed before you import
changes from Oracle Applications or legacy data, so that the test cases are up-to-date
with the application that has been constructed. Your Model’s full system testing
should include importing changed data and upgrading Oracle Configurator to match
current enterprise or legacy data before deploying the runtime Oracle Configurator.
Test cases may have to be updated to match the changes.

Although randomly updating imported data in the CZ schema during a development
phase is not recommended, Oracle recognizes that project managers may need to
synchronize with Oracle Applications data frequently. Refreshes and updates require
careful control of what data gets imported. Likewise, corrections to the definitions of
the configuration model in the runtime Oracle Configurator should be carefully
controlled. A refresh may cause deletion of previously imported data. For example, if
components are deleted from a BOM Model, they are also deleted from the
configuration model during the next refresh. If components are added to the BOM
Model, they are added to the configuration model during the next refresh. Oracle
Configurator’s Disable/Enable Refresh of a Configuration Model concurrent program
can be used to reduce the number of Models affected by a refresh by disabling or
enabling specific configuration models. Oracle Configurator’s Refresh a Single
Configuration Model concurrent program, updates the single imported BOM Model
data in the CZ schema with changes that may have been made in the BOM Model.

5.2.10.2 Refreshing Procedures
If you are refreshing configuration models based on BOM Models that were previously
imported from Bills of Material (Releases 10.7, 11.0, or 11i) you must:

1. Enable the refresh of a configuration model (see Section C.4.4, "Disable/Enable
Refresh of a Configuration Model" on page C-15)

2. Explode the BOM Models you want to import if you are not importing from the
local server (see Section 5.2.6, "Exploding BOM Models in Oracle Applications" on
page 5-8)

3. Run the appropriate refresh concurrent program (see Section C.4.2, "Refresh a
Single Configuration Model" on page C-13 or Section C.4.3, "Refresh All Imported
Configuration Models" on page C-14)

After you refresh a BOM Model, all changes that were made in Oracle Bills of Material
are reflected in Oracle Configurator Developer. For more information see the Oracle
Configurator Developer User’s Guide.

5.2.11 Importing a BOM Model That Contains Other BOM Models
This section describes what exists in the CZ schema and is visible in Configurator
Developer when you first import a BOM Model that contains other BOM Models from
Oracle Bills of Material.

Warning: If you are using a separate development database,
then you must never Generate Logic, Refresh or Create a User
Interface, or run any schema maintenance scripts against a
production database. Never use Oracle Configurator Developer
for any development work on a production database.

5-14 Oracle Configurator Implementation Guide

Example 5–1 Importing a BOM Model that Contains Other BOM Models

You have a BOM Model (B1) that contains two child BOM Models (B2 and B3).
Importing B1 results in three corresponding Models (M1, M2, and M3) in the CZ
schema. All of these Models are visible in the Main area of the Configurator Developer
Repository. Because B2 and B3 have child components in Oracle Bills of Material, M2
and M3 have corresponding children in Configurator Developer. See Figure 5–2,
"Initial Import of BOM Model with Submodels".

Figure 5–2 Initial Import of BOM Model with Submodels

5.2.12 Refreshing a BOM Model That Contains Other BOM Models
This section explains what happens in Configurator Developer when you refresh a
BOM Model in which the following changes have been made in Oracle Bills of
Material:

■ BOM Model References Have Changed

■ BOM Models Referenced by Previously Imported BOM Model Have Changed

5.2.12.1 BOM Model References Have Changed
Replacing one child BOM Model for another in a BOM Model causes the root Model to
be refreshed as expected. However, the child Model that was previously referenced is
no longer referenced, but remains in the Configurator Developer Repository.

BOM Model B1 no longer references BOM Model B3, but now references BOM Model
B2 and a new BOM Model B4. B2 has been modified to contain C1 and C10 and no
longer contains C2. The new BOM Model B4 contains C5 and C6. When you populate
or refresh BOM Model B1 by running either the Populate Configuration Models or
Refresh a Single Configuration Model concurrent program, the corresponding Models
M1 and M2 are refreshed in Oracle Configurator Developer. Model M4 is created to
correspond to BOM Model B4 and Model M3 remains unchanged. Figure 5–3
illustrates this result in Oracle Configurator Developer.

Standard Import

Populating the CZ Schema 5-15

Figure 5–3 Populate and Refresh Modified BOM Model

5.2.12.2 BOM Models Referenced by Previously Imported BOM Model Have
Changed
Modifying and refreshing a child BOM Model that is referenced by numerous parent
Models in Oracle Configurator Developer may cause the logic and UI of those parent
Models to become invalid.

Using the example presented in Figure 5–4 on page 5-15, you create BOM Model B6 in
Oracle Bills of Material. BOM Model B6 references BOM Models B2 and B3. When you
import BOM Model B6 by running the Populate Configuration Models concurrent
program, a new corresponding Model M6 appears in Oracle Configurator Developer
as well as updated versions of Models M2 and M3. Model M1 now references the
updated Model M2.

Figure 5–4 Import a New BOM Model with References to Existing BOM Models

Models M1 and M6 both reference Model M2. When BOM Model B6 is imported into
the CZ Schema, Model M2 is refreshed with a new child node C12. Model M1 is not
refreshed. Importing Model M6 might create problems for Model M1 because the logic
and UI may no longer be valid with the changes and updates. In this case, you must
regenerate both the logic and the UI for Model M1.

5-16 Oracle Configurator Implementation Guide

If Model M1 was published before Model M2 was refreshed, then the runtime Oracle
Configurator end user can still use Model M1 that references the original Model M2, as
well as the publication of Model M6 that references the refreshed Model M2. This
scenario is possible because the publishing process creates a copy of the configuration
model at the time of publication.

For more information on publishing, see Chapter 16, "Publishing Configuration
Models" and the Oracle Configurator Developer User’s Guide.

5.2.13 BOM Model with a Common Bill
When a BOM Model that references a common bill is imported into the CZ schema, the
imported BOM Model is available in the Main area of the Repository, but the common
bill is not. When the imported BOM Model is opened in Configurator Developer, the
components of the common bill appear as if the BOM was created with those
components. The common bill is only available to the organization that imported the
BOM Model. But when a common bill is imported directly (not as a reference), then
the common bill is available to all organizations.

When you open the imported BOM Model for editing in the Structure area of the
Workbench, the common bill’s components are visible and available, but there are no
visual clues indicating that the components are from a common bill.

When a BOM Model with references to BOMs is imported, the import procedure
warns that a referenced BOM is being imported. When a BOM Model with references
to a common bill is imported, there is no warning that the referenced bill is a common
bill. For general information about common bills, see the Oracle Bills of Material User’s
Guide.

5.3 Rule Import
Configuration rules from legacy applications can be imported into the CZ schema.
Before these rules can be imported into the CZ schema, they must be written in
Constraint Definition Language format. For information about writing rules in CDL
format, see the Oracle Configurator Constraint Definition Language Guide. Section 5.3.1,
"Rule Import Procedure" on page 5-16 identifies the necessary tasks for importing
these rules.

All rules imported in CDL format appear as Statement Rules in Oracle Configurator
Developer. For more information about Statement Rules, see the Oracle Configurator
Developer User’s Guide.

5.3.1 Rule Import Procedure
Importing rules into the CZ schema consists of the following steps:

1. Write the rule in CDL format.

2. Verify that the Model associated with the rule exists in the CZ schema. Note the
Model’s DEVL_PROJECT_ID. The DEVL_PROJECT_ID is used when you
populate the CZ_IMP_LOCALIZED_TEXTS and CZ_IMP_RULES tables.

3. Populate the CZ_IMP_RULES table. See Section 5.3.2, "Populating CZ_IMP_
RULES" on page 5-17 for a list of fields that must be populated for each rule.

Note: Rules cannot be imported from a remote database. The source
and target tables must be in the same database instance.

Rule Import

Populating the CZ Schema 5-17

4. Populate the CZ_IMP_LOCALIZED_TEXTS table. See Section 5.3.3, "Populating
CZ_IMP_LOCALIZED_TEXTS" on page 5-19 for a list of fields that must be
populated for each rule.

5. Run the Import Configuration Rules concurrent program.

The Import Configuration Rules concurrent program validates the rules and stores
the CDL format in the Rules subschema. Section 5.3.6, "Rule Validation" on
page 5-21 lists the fields that are examined when validating a rule during rule
import.

For more information about the concurrent program, see Section C.4.5, "Import
Configuration Rules" on page C-15.

6. Edit the rules that had parsing errors as reported in the concurrent program log
file.

All rules processed by the Import Configuration Rules concurrent program are
imported into the CZ schema regardless of whether they have parsing errors. Once
the rules are in the CZ schema, they can be edited in Configurator Developer or in
the legacy environment and then refreshed.

5.3.2 Populating CZ_IMP_RULES
The following fields must be populated in the CZ_IMP_RULES table before you can
run the Import Configuration Rules concurrent program.

■ ORIG_SYS_REF: A user-defined character string that identifies the rule as an
imported rule.

■ NAME: The name of the rule with a maximum of 255 characters

■ RULE_FOLDER_ID: A number that identifies where the rule information is stored
in CZ_RULE_FOLDERS. If this field is null, then the rule is stored in the Model’s
Configuration Rules folder.

Once a rule is imported into the Model’s Configuration Rules folder, you can move
the rule to another rule folder associated with the Model.

■ DEVL_PROJECT_ID: The numeric identifier of the Model that is associated with
the rule. This is a foreign key into CZ_DEVL_PROJECTS. DEVL_PROJECT_ID and
must be the same number as CZ_IMP_LOCALIZED_TEXTS.MODEL_ID.

■ RULE_TEXT: The actual CDL rule text

■ RULE_TYPE: The numeric identifier of the type of rule. The imported rule is a
Statement Rule and the RULE_TYPE is 200.

You should not populate the following fields in the CZ_IMP_RULES table:

WARNING: If a rule is edited in both the legacy environment and
the Configurator Developer environment and you refresh the rule,
then the refreshed rule overwrites any changes that may have been
made to the rule in the Developer environment.

Note: If you move a rule to another rule folder, then you must
specify the RULE_FOLDER_ID when you refresh the rule. If you do
not specify the RULE_FOLDER_ID, then the refreshed rule will be
moved into the Model’s Configuration Rules root folder.

5-18 Oracle Configurator Implementation Guide

■ AMOUNT_ID

■ ANTECEDENT_ID

■ CHECKOUT_USER

■ CLASS_NAME

■ COMPONENT_ID

■ CONSEQUENT_ID

■ CREATED_BY

■ CREATION_DATE

■ DISPOSITION - See Section C.4.5, "Import Configuration Rules" on page C-15 for
additional information

■ EFF_FROM

■ EFF_MASK

■ EFF_TO

■ EXPR_RULE_TYPE

■ FSK_COMPONENT_ID

■ FSK_DEVL_PROJECT

■ FSK_LOCALIZED_TEXT_2

■ FSK_MODEL_REF_EXPL_ID

■ GRID_ID

■ IMPORT_PROG_VERSION

■ INSTANTIATION_SCOPE

■ INVALID_FLAG

■ LAST_UPDATED_BY

■ LAST_UPDATE_DATE

■ LAST_UPDATE_LOGIN

■ MESSAGE

■ MODEL_REF_EXPL_ID

■ MUTABLE_FLAG

■ PERSISTENT_RULE_ID

■ PRESENTATION_FLAG

■ REASON_ID

■ REC_STATUS - See Section C.4.5, "Import Configuration Rules" on page C-15 for
additional information.

■ RULE_FOLDER_TYPE

■ RULE_ID

■ SEEDED_FLAG

■ SEQ_NBR

■ SIGNATURE_ID

Rule Import

Populating the CZ Schema 5-19

■ SUB_CONS_ID

■ TEMPLATE_PRIMATIVE_FLAG

■ TEMPLATE_TOKEN

■ UI_DEF_ID

■ UI_PAGE_ID

■ UI_PAGE_ELEMENT_ID

■ UNSATISFIED_MSG_ID

For more information about the CZ_IMP_RULES table, see the CZ eTRM on Metalink,
Oracle’s technical support Web site.

5.3.3 Populating CZ_IMP_LOCALIZED_TEXTS
Multiple Language Support data for rule violations and unsatisfied messages are
stored in the CZ_IMP_LOCALIZED_TEXTS table. A single rule may have several
records in the CZ_IMP_LOCALIZED_TEXTS table. If a rule has multiple translations,
then there must be a record in CZ_IMP_LOCALIZED_TEXTS for each translation. All
translation records for a single rule must have the same ORIG_SYS_REF.

For information on Multiple Language Support, see Chapter 14, "Multiple Language
Support", the Oracle Configurator Installation Guide, Installing Oracle Applications: A
Guide to Using Rapid Install, and Oracle Applications Concepts.

After you have created your CDL rule, you must populate the following fields in CZ_
IMP_LOCALIZED_TEXTS table before running the Import Configuration Rules
concurrent program.

■ ORIG_SYS_REF: A user-defined character string that identifies the rule as an
imported rule.

■ LANGUAGE: The language code that is associated with the rule.

■ SOURCE_LANG: The language code of the LOCALIZED_STR field.

■ MODEL_ID: The DEVL_PROJECT_ID of the Model associated with the rule. The
MODEl_ID must be the same number as CZ_IMP_RULES.DEVL_PROJECT_ID.

■ LOCALIZED_STR: The rule’s translated text.

You should not populate the following fields in the CZ_IMP_LOCALIZED_TEXTS
table:

■ CHECKOUT_USER

■ CREATED_BY

■ CREATION_DATE

■ DISPOSITION - See Section C.4.5, "Import Configuration Rules" on page C-15 for
additional information.

■ EFF_FROM

■ EFF_MASK

■ EFF_TO

■ INTL_TEXT_ID

■ LAST_UPDATED_BY

■ LAST_UPDATE_DATE

5-20 Oracle Configurator Implementation Guide

■ LAST_UPDATE_LOGIN

■ LOCALE_ID

■ MESSAGE

■ SEEDED_FLAG

■ REC_STATUS - See Section C.4.5, "Import Configuration Rules" on page C-15 for
additional information.

■ FSK_DEVL_PROJECT_1_1

■ IMPORT_PROG_VERSION

For more information about the CZ_IMP_LOCALIZED_TEXTS and CZ_INTL_TEXTS
tables, see the CZ eTRM on Metalink, Oracle’s technical support Web site.

5.3.4 Rule Import Tables
Every imported rule in CZ_IMP_RULES has a corresponding record in the CZ_RULE_
FOLDER. The imported rule is linked to the specified Model’s (DEVL_PROJECT_ID)
Configuration Rules folder.

Table 5–1 describes the CZ tables that are used when importing rules:

Table 5–1 Tables for Importing Rules

Table Name Description

CZ_IMP_RULES The source rule’s data that is imported into the CZ_RULES in
the CZ schema. The following columns are used when
importing rules do not appear in the CZ schema:

■ MESSAGE - Is the error message if a rule is rejected during
import. The rejection of a rule does not terminate the rule
import request. A rejected rule is imported into the CZ
schema.

■ RUN_ID - Is the Parameter for the Import Configuration
Rules Concurrent Program. It is a generated number when
the RUN_ID is not specified.

■ DISPOSITION - Is the result of processing the rule in the
stage specified in REC_STATUS. For more information, see
Stages of Rule Import on page 5-21.

■ REC_STATUS - Is the stage that the rule has been processed.
For more information, see "Stages of Rule Import" on
page 5-21.

■ IMPORT_PROG_VERSION - Is the version of the import
program that is used for importing data. The default value
is 1.0.

Custom Import

Populating the CZ Schema 5-21

5.3.5 Stages of Rule Import
Each rule goes through three processing stages before it is imported into the CZ
schema. The rule’s processing stage is tracked in CZ_IMP_RULES.REC_STATUS and
CZ_IMP_LOCALIZED_TEXTS.REC_STATUS. The result of each processing stage is
tracked in CZ_IMP_RULES.DISPOSITION and CZ_IMP_LOCALIZED_
TEXTS.DISPOSITION. For more information about REC_STATUS and DISPOSITION
during rule import, see Table 4–1, " Import Control Fields" on page 4-3.

After all rules have been processed, the rules that have REC_STATUS=XFR and
DISPOSITION = I or M are parsed.

5.3.6 Rule Validation
During rule import, the following fields are checked. If the field meets the criteria
stated below, then an error message is stored in CZ_IMP_LOCALIZED_
TEXTS.MESSAGE.

■ CZ_IMP_LOCALIZED_TEXTS.ORIG_SYS_REF is null or belongs to a different
Model

■ CZ_IMP_LOCALIZED_TEXTS.LANGUAGE is null

■ CZ_IMP_LOCALIZED_TEXTS.MODEL_ID - is null or refers to an invalid Model.

■ CZ_IMP_LOCALIZED_TEXTS.SOURCE_LANG is null

■ CZ_IMP_RULES.ORIG_SYS_REF is null

■ CZ_IMP_RULES.NAME is null

■ CZ_IMP_RULES.MODEL_ID is null or refers to an invalid Model

5.4 Custom Import
 A custom import is required for importing data not handled by a standard import,
including legacy data from non-Oracle Applications databases. See Section 5.2,

CZ_IMP_LOCALIZED_
TEXTS

The rule’s translation data that is imported into the CZ schema.
The following columns are used when importing rules and do
not appear in the CZ schema:

■ MESSAGE - Is the error message if a rule is rejected during
import. The rejection of a rule does not terminate the rule
import request. A rejected rule is imported into the CZ
schema.

■ RUN_ID - Is the Parameter for the Import Configuration
Rules Concurrent Program. It is a generated number when
the RUN_ID is not specified.

■ DISPOSITION - Is the result of processing the rule in the
stage specified in REC_STATUS. For more information, see
Stages of Rule Import on page 5-21.

■ REC_STATUS - Is the stage that the rule has been processed.
For more information, see "Stages of Rule Import" on
page 5-21.

■ IMPORT_PROG_VERSION - Is the version of the import
program that is used for importing data. The default value
is 1.0.

Table 5–1 (Cont.) Tables for Importing Rules

Table Name Description

5-22 Oracle Configurator Implementation Guide

"Standard Import" on page 5-3 to determine whether your data requires a custom data
import. This section describes:

■ Overview of Custom Data Import

■ Identifying Data for a Custom Data Import

■ Custom Import Procedure

■ Required ASCII File Format for Custom Import

5.4.1 Overview of Custom Data Import
Both the standard and custom data import processes use the import tables in the CZ
schema to populate the online tables. However, while data extraction for a standard
import is handled by the Populate and Refresh Configuration Models Concurrent
Programs, a custom import requires custom extraction, transfer, and load into the
import tables. Figure 5–5 shows where in the process the two kinds of data import are
different.

Figure 5–5 Comparison of Custom and Standard Data Import

When importing data not handled by a standard import, especially non-Oracle legacy
data, the data must be custom loaded into the import tables. Custom programs then
populate the online tables with the extracted data. The data that is imported depends
on the settings in the control tables (CZ_XFR_ tables in the CZ schema) and the custom
load program, if applicable. See Section 5.4.3, "Custom Import Procedure" on page 5-23
for information about performing a custom import.

After successfully importing any legacy data needed for modeling new configurations,
Oracle recommends that you unit test your configuration model before transferring
new or updated model data. Unit testing configuration models is performed in the
Oracle Configurator Developer. See the Oracle Configurator Developer User’s Guide for
more information.

Custom Import

Populating the CZ Schema 5-23

5.4.2 Identifying Data for a Custom Data Import
The following tables can be populated through a custom import:

CZ_DEVL_PROJECTS
CZ_INTL_TEXTS
CZ_ITEM_MASTERS
CZ_ITEM_PROPERTY_VALUES
CZ_ITEM_TYPES
CZ_ITEM_TYPE_PROPERTIES
CZ_LOCALIZED_TEXTS
CZ_PROPERTIES
CZ_PS_NODES

Minimally, the following tables are used for custom import and should be selected
when you run the Select Tables To Be Imported concurrent program:

CZ_ITEM_MASTERS
CZ_ITEM_TYPES
CZ_ITEM_TYPE_PROPERTIES
CZ_ITEM_PROPERTY_VALUES
CZ_PROPERTIES

To know what data to extract for populating the import tables, you need to know what
fields are available in the import tables for data population. See the CZ eTRM on
Metalink, Oracle’s technical support Web site, for detailed information about all
import table fields. See also Table 4–2, on page 4-5 for information about the
dependencies among the import tables.

As with a standard data import, you can further control the data populating the online
tables by using the control tables (CZ_XFR_). See Section 5.2.7, "Controlling the Data
for Import" on page 5-8 for details.

Custom import programs should consider the setting of QUOTEABLE_FLAG in the
CZ_PS_NODES table. This flag determines whether or not the OC Servlet’s UI Server
displays a particular Item in the Configuration Summary page. For more information
about the Summary page see the Oracle Configurator Developer User’s Guide.

5.4.3 Custom Import Procedure
If you are importing data not handled by a standard import, you must:

1. Identify and cleanse data for import.

2. Create and run custom extraction programs for the data you want to import:

a. Write queries to extract the data into the required data transfer file format
required by the import tables.

b. Optionally create an ASCII file in that data transfer (DAT) format (see
Section 5.4.4 on page 5-24).

c. Write a load program that loads the data transfer file into the import tables, or
loads the queried data directly into the import tables in the format required.

3. Optionally set up the CZ control tables to customize the transfer of data (see
Section 5.2.7 on page 5-8).

4. Run the cz_modeloperations_pub.import_generic PL/SQL procedure. For more
information see IMPORT_GENERIC on page 18-24.

5. Verify your import as described in Section 5.2.9 on page 5-12.

5-24 Oracle Configurator Implementation Guide

5.4.4 Required ASCII File Format for Custom Import
The format of the data transfer files must exactly match the target import tables, field
for field. The data transfer files include all data in text (ASCII) format, with fields
separated by delimiters such as a vertical bar (|).

Example 5–2 shows a data transfer file that imports Item types.

Example 5–2 Data Transfer File Format

	Memory Board																		
	Dual CPU																		
	Country																		
	System Console																		
	Server Console																		
	Disk Drive																		
	Storage Media																		
	Server Size																		
	Power Supply																		
	Matrix Printer																		
	SCSI Disk Drive																		
	Cache Memory																		
	Disk Array Model																		
	SCSI Type																		
	SCSI Cable																		
	SCSI Chaining																		
	SCSI Cabling Configuration																		
	Server Type																		
	System Size																		

Migrating Data 6-1

6
Migrating Data

This chapter describes migrating data from another CZ schema to an 11i CZ schema.

6.1 Overview
Migration is the process of transferring data from one database instance to another
database instance. Migration should only be run against an 11i target database
containing a new installation of Oracle Applications. The target database instance
must be the same schema version as the source database instance.

Migration does not:

■ Transfer data from the CZ_IMP_ tables

■ Transfer data from custom tables that are not in the CZ schema

■ Transfer saved configurations

Because there is typically a large amount of data and a lengthy migration time
associated with saved configurations, migrating saved configurations is not
recommended.

6.2 Migrating Data from Another CZ Schema
To migrate CZ data from one Oracle Configurator 11i instance to another Oracle
Configurator 11i instance you must be using Oracle Configurator version 11.5.7.17.44
or later.

To migrate an Oracle Configurator 11i schema, do the following:

1. Check the versions of the Oracle Configurator 11i source and target database
schemas.

Both the source and the target must be at the same minor version. If there is a
difference between the two database schema versions, then migration cannot
continue. You must take appropriate steps, such as upgrading, to bring either the
source database instance or the target database instance to the desired version.

See Section B.3, "Verifying CZ Schema Version" on page B-3 for details.

Warning: Data migration is a one-time process. Once migration is
complete, do not repeat the process or use the migration scripts to
refresh data in the Oracle Applications database. Migration scripts
are run once to move data between database instances that are the
same schema versions.

Migrating Data from Another CZ Schema

6-2 Oracle Configurator Implementation Guide

2. Verify that there are no implementors logged in to Configurator Developer that is
connected to the either the migration source or target database instances.

3. Verify that there are no end users connected to either the migration source or
target database instances, including production deployments or a test runtime
Oracle Configurator.

4. Delete Models from the Oracle Configurator Developer Repository that do not
need to be migrated into the target database schema.

5. Run the Purge Configurator Tables concurrent programs to clean up the source
schema prior to migrating the data. For more information see Section C.1.3, "Purge
Configurator Tables" on page C-3.

6. Verify that the target CZ schema is empty before you run the Setup Configurator
Data Migration concurrent program on the target database instance. For more
information see Section C.7.1, "Setup Configurator Data Migration" on page C-20.

7. Run the Migrate Configurator Data concurrent program from the target database
instance. For more information, including possible issues recorded in the log file,
see Section C.7.2, "Migrate Configurator Data" on page C-21.

8. Resolve all issues or errors that are reported in the log file.

9. Verify that the Import Enabled flag on the source database instance is enabled. For
more information, see Section C.2.3, "Enable Remote Server".

10. Run the Synchronize All Models concurrent program on the target database if the
source database instance contains imported BOM Model data. The target instance
must be synchronized after a successful migration. For more information on BOM
Model synchronization, see Section 7.2.1 on page 7-2.

Synchronizing Data 7-1

7
Synchronizing Data

This chapter explains how to restore the identity and linkage of mismatched data by:

■ Synchronizing BOM Model Data

■ Synchronizing Publication Data

7.1 Overview
The kinds of data and circumstances requiring synchronization are:

■ BOM Models

– The import server changed to a different database instance

– The production database instance is not the import server

– Import source or import target data has been migrated to another database
instance

■ Configuration model publication records

– The Publication source or target database instance has been cloned

– Publication data has been migrated to another database instance

Publication synchronization must be run after BOM Model synchronization only when
data is migrated from one database instance to another. In all other scenarios, the two
kinds of synchronization are independent from one another. For more information on
migration, see Chapter 6, "Migrating Data".

For information about synchronizing BOM Model data, see Section 7.2, "Synchronizing
BOM Model Data" on page 7-1.

For information about synchronizing publication records on cloned database
instances, see Section 7.3.1, "Synchronizing Publication Data after a Database Instance
is Cloned" on page 7-5.

7.2 Synchronizing BOM Model Data
The configuration model in the CZ schema is an extension of the source BOM Model
that participates in Oracle Applications processes such as ordering. For a BOM Model
to be orderable, the BOM Model in the CZ schema must match certain criteria with the
BOM Model in Oracle Bills of Material. Synchronization causes the BOM-based
configuration model in the CZ schema to be modified to match the production BOM
Model.

Synchronizing BOM Model Data

7-2 Oracle Configurator Implementation Guide

Data synchronization is not the same as data refresh (see Section 5.2.10, "Refreshing
Imported Data" on page 5-12).

The concurrent programs for synchronizing BOM Model data are described in
Section C.5, "Model Synchronization Concurrent Programs" on page C-17.

7.2.1 The BOM Model Synchronization Process
The process for synchronizing BOM Model data is as follows:

1. Check the similarity between the production BOM Model you wish to use as the
new import source or publication target, and the BOM Model represented in your
configuration model.

For more information, see Section 7.2.2, "Checking BOM and Model Similarity" on
page 7-2.

2. Synchronize the BOM Model in the configuration model with the source BOM
Model by running the Synchronize All Models concurrent program. For more
information, see Section 7.2.4, "Result of Synchronizing BOM Models" on page 7-4.

3. After synchronizing the BOM-based configuration model with the source BOM
Model, you can proceed with any of the following:

■ Reimport or refresh the BOM Model in the CZ schema (see Chapter 5,
"Populating the CZ Schema")

■ Publish the configuration model (see Chapter 16, "Publishing Configuration
Models")

Running the publication concurrent programs includes BOM Model
synchronization. For details, see Section 16.4, "Publishing a Configuration Model"
on page 16-8.

7.2.2 Checking BOM and Model Similarity
The two concurrent programs available for checking if the BOM Model in the CZ
schema sufficiently matches the source BOM Model are:

■ Check Model/Bill Similarity

■ Check All Models/Bills Similarity

For details about these concurrent programs, see Section C.5.1, "Check Model/Bill
Similarity" on page C-17 and Section C.5.2, "Check All Models/Bills Similarity" on
page C-18.

Running the Check Model/Bill Similarity and Check All Models/Bills Similarity
concurrent programs creates a Check Model/Bill Similarity report, which describes the
fields that do not match and must be corrected before synchronization can occur. For
more information, see Section 7.2.3, "Criteria for BOM Model Similarity" on page 7-2.
For more information about the report, see Section C.5.4, "Model/Bill Similarity Check
Report" on page C-19.

7.2.3 Criteria for BOM Model Similarity
The Check Model/Bill Similarity and Check All Models/Bills Similarity concurrent
programs use validation criteria to determine if a BOM-based configuration model is
similar enough to be synchronized with the source BOM Model:

■ Both structures use the same Inventory Items. For example: The bill’s Item identity
is identified by the concatenated values of segments 1 through 20 in MTL_

Synchronizing BOM Model Data

Synchronizing Data 7-3

SYSTEM_ITEMS of the corresponding Item. CZ_PS_NODES are identified by the
corresponding value of CZ_ITEM_MASTERS.REF_PART_NBR.

■ Parent-child relationships are the same in the source and target BOM Models. For
example, each imported parent node has the same imported children Items as in
the BOM Model structure. The order of the children may be different.

■ Certain Item characteristics are the same. For example, the value of minimum or
maximum default quantities, or the ’Required when parent is selected’ Property
are the same.

■ A child’s effectivity range does not fall outside the effectivity range of its parent.

– If there is only one child node with the given identity (CONCATENATED_
SEGMENTS), then its disable date (effective to date) should be the same as the
parent node and the effective dates (effective from date) should either be
before SYSDATE or be the same for the child node and the parent.

– If there is more than one child node with the given identity
(CONCATENATED_SEGMENTS), then the previous scenario is only valid for
the child node that has the earliest effective date. For the other child nodes the
ranges should be exactly the same.

■ When creating a BOM Model through an interface, records may not be recognized
by Oracle Configurator during the synchronization process if the BOM_
INVENTORY_COMPONENTS.IMPLEMENTATION_DATE field is null. If this
field is null, then it is automatically populated with either the EFFECTIVITY_
DATE or the SYSDATE.

Table 7–1 lists the configuration model’s data fields that must be synchronized with
the import source BOM Model or publication target.

Table 7–1 Fields That Must Be Synchronized

Table Field Import Publication

CZ_DEVL_PROJECTS ORIG_SYS_REF includes back
pointers to EXPLOSION_
TYPE:ORGANIZATION_
ID:TOP_ITEM_ID

Yes Yes

CZ_ITEM_MASTERS ORIG_SYS_REF includes back
pointers to INVENTORY_ITEM_
ID:ORGANIZATION_ID

Yes Yes

CZ_ITEM_TYPES ORIG_SYS_REF includes back
pointers to ITEM_CATALOG_
GROUP_ID

Yes Yes

CZ_LOCALIZED_TEXTS ORIG_SYS_REF includes back
pointers to COMPONENT_
ITEM_ID:EXPLOSION_
TYPE:ORGANIZATION_ID

Yes No

CZ_MODEL_
PUBLICATIONS

PRODUCT_KEY includes back
pointers to ORGANIZATION_
ID:TOP_ITEM_ID

Yes Yes

ORGANIZATION_ID Yes Yes

TOP_ITEM_ID Yes Yes

Synchronizing BOM Model Data

7-4 Oracle Configurator Implementation Guide

Organization information is mapped by matching ORG_ORGANIZATION_
DEFINITIONS.ORGANIZATION_CODE. If the matching Organization is not found,
then an error occurs.

BOM Model synchronization checks the Models that are candidates for
synchronization but results in an error if a Model does not have an EXPLOSION_TYPE
of OPTIONAL. See Section 5.2.7.4, "Modifying EXPLOSION_TYPE" on page 5-9 for
more information about the EXPLOSION_TYPE setting. BOM Model synchronization
does not check the mandatory fields.

7.2.4 Result of Synchronizing BOM Models
After determining that the source BOM Model and the BOM-based configuration
model are sufficiently similar, based on the report generated by the Check Model/Bill
Similarity and Check All Models/Bills Similarity concurrent programs, the BOM
Models can be synchronized either by running the Synchronize All Models or the
publication concurrent programs. See Section C.5.3, "Synchronize All Models" on
page C-18.

Attempting to synchronize mismatched BOM Models results in errors.

BOM synchronization causes the Item identification in the BOM-based configuration
model to be matched with the import source or publication target BOM Model. During
data import, the CZ schema is populated with the source BOM Model’s ORIG_SYS_
REF identification. However, the same BOM Model in Bills of Material of two different
database instances may have different ORIG_SYS_REF identification.

If the database instance from which the BOM Model was imported into the CZ schema
is replaced with a new instance containing the same BOM Model, most likely the
ORIG_SYS_REF identification longer matches the original source BOM Model.
Likewise, if the configuration model is being published to an instance that did not
serve as the import server, the ORIG_SYS_REF identification may not match the source
BOM Model.

CZ_PS_NODES ORIG_SYS_REF includes back
pointers to COMPONENT_
CODE:EXPLOSION_
TYPE:ORGANIZATION_
ID:TOP_ITEM_ID

Yes Yes

COMPONENT_SEQUENCE_
PATH

Yes Yes

COMPONENT_SEQUENCE_ID Yes Yes

CZ_XFR_PROJECT_BILLS ORGANIZATION_ID Yes No

TOP_ITEM_ID Yes No

COMPONENT_ITEM_ID Yes No

SOURCE_SERVER Yes No

Note: It is important that the Item flexfield structure and the
concatenation characters for the Item flexfield be the same on all
database instances and not updated.

Table 7–1 (Cont.) Fields That Must Be Synchronized

Table Field Import Publication

Synchronizing Publication Data

Synchronizing Data 7-5

Because CZ_ITEM_TYPE_PROPERTIES and CZ_ITEM_PROPERTY_VALUES do not
have the ORIG_SYS_REF field, there is no way for the Check Model/Bill Similarity
and Check All Models/Bills Similarity concurrent programs to verify that the
imported Properties and Property values correspond to the Descriptive Elements and
their values on the target instance. Runtime Models use the imported Property values.
You must manually verify that the Descriptive Elements and their values are the same
on both the source and target of the BOM Model synchronization.

7.3 Synchronizing Publication Data
Publication data can become inconsistent when you

■ Clone a publication source or target database instance

■ Migrate data from one database instance to another

■ Decommission the production or target database instance

After changing databases in these ways, you must synchronize the publication data so
that inconsistencies are corrected. Examples of data inconsistencies are:

■ Missing publications

■ Incorrect publications

■ Overlapping publications

■ Missing or incorrect entries in the CZ_SERVERS table

The concurrent programs for synchronizing publication data are described in
Section C.9, "Publication Synchronization Concurrent Programs" on page C-24.

See Chapter 16, "Publishing Configuration Models" for details about creating
publications, and about the relationship between the publication data on the source
and target database instances.

7.3.1 Synchronizing Publication Data after a Database Instance is Cloned
Cloning can be done into a new empty database instance or into one that already
contains work product data. In either case, the cloned database contains a copy of the
original data, but publication data becomes inconsistent in the following ways.

■ References between the source and target publications can become lost or incorrect

■ Applicability parameters of publication records on the source and target can
overlap

Publication data inconsistencies need to be resolved by updating data on both the
cloned and the publication source or on the target that was not cloned. The following
publication synchronization concurrent programs are available after cloning either a
target or source database instance:

■ Synchronize Cloned Target Data synchronizes the publication data in the new
cloned target database with the publication data on the source database.

■ Synchronize Cloned Source Data synchronizes the publication data in the new
cloned source database with the publication data on the target database.

See Section 7.3.2.4, "Example of Synchronizing Publication Data on a Cloned Target"
on page 7-7 for details about the circumstances and results of synchronizing a cloned
publication target. See Section 7.3.2.5, "Example of Synchronizing Publication Data on
a Cloned Source" on page 7-9 for details about the circumstances and results of
synchronizing a cloned publication source.

Synchronizing Publication Data

7-6 Oracle Configurator Implementation Guide

7.3.2 Example of Synchronizing Publication Data
The example illustrating publication synchronization uses CZ_SERVERS and CZ_
MODEL_PUBLICATIONS data to illustrate where inconsistencies occur between a
publication source and target after cloning or restoring a source or target database
instance from backup.

7.3.2.1 CZ_SERVERS Table
Publication synchronization updates the CZ_SERVERS table to ensure that the local
and remote servers are listed correctly to associate the cloned publication source or
target with the appropriate publication records on the unchanged target or source,
respectively.

7.3.2.2 CZ_MODEL_PUBLICATIONS Table
The following columns in the CZ_MODEL_PUBLICATIONS table help identify target
publications relative to their source so that they can be republished:

■ PUBLICATION_ID

■ REMOTE_PUBLICATION_ID

■ SERVER_ID

PUBLICATION_ID
PUBLICATION_ID is the publication’s generated identifier in the database instance
containing the configuration model. This identifier is generated when a publication
record is created in the Create Publication page.

REMOTE_PUBLICATION_ID
REMOTE_PUBLICATION_ID on the source database instance points to the
PUBLICATION_ID on the target database instance. The REMOTE_PUBLICATION_ID
on the target database instance points to the PUBLICATION_ID on the source
database instance. See Figure 7–1, "Original Publication" on page 7-7.

SERVER_ID
SERVER_ID associates the publication record with a database instance in the CZ_
SERVERS table.

7.3.2.3 Example Publication Data Before Cloning
The following explanations of example publication data presume a publication source
database, A, with PUBLICATION_ID 1000 and a publication target database, B, with
PUBLICATION_ID 2000. Figure 7–1 shows the original publication records on Source
A and Target B.

In the publication record on Source A:

■ REMOTE_PUBLICATION_ID is 2000 because it points to the PUBLICATION_ID
on the publication target

Warning: After cloning a publication source, do not clone the target
until you have first synchronized publications on that cloned source,
or vice versa.

Synchronizing Publication Data

Synchronizing Data 7-7

■ SERVER_ID of the publication record is B because it points to the LOCAL
SERVER_ID on the publication target

In the publication record on Target B:

■ REMOTE_PUBLICATION_ID is 1000 because it points back to the
PUBLICATION_ID on the publication source

■ SERVER_ID of the target publication record is B, because it identifies itself as the
LOCAL entry in the CZ_SERVERS table

Figure 7–1 Original Publication

Publication records on the target assume only one publication source and do not
identify the source publication record by the SERVER_ID of the source.

7.3.2.4 Example of Synchronizing Publication Data on a Cloned Target
Synchronizing publication data on a cloned target resolves the following issues caused
by cloning the publication target:

■ The CZ_SERVERS table on the source does not include a listing for the cloned
target.

■ A database link must be established between the publication source and the
cloned target.

■ References to the publication record on the source database instance are lost,
wrong, or have overlapping applicability parameters.

Figure 7–1 shows the original publication records on Source A and Target B.

Target B is then cloned to create Target C. Figure 7–2 illustrates the resulting cloned
Target C copy. The publication record on Source A does not point to the cloned
publication record on cloned Target C. Source A still references Target B as the target
server for the publication record (SERVER_ID:B).

Synchronizing Publication Data

7-8 Oracle Configurator Implementation Guide

Figure 7–2 Publication After Cloning

Source A is then synchronized with Target C. Figure 7–3 illustrates the resulting
publication information after synchronization. A new publication record is created on
Source A referencing the record on cloned Target C. The publication record on cloned
Target C is also updated so that it references the new publication record on Source A as
well as correcting the SERVER_ID that associates the publication record with a LOCAL
database instance.

Figure 7–3 Publication After Synchronization

Synchronizing Publication Data

Synchronizing Data 7-9

Table 7–2 summarizes the publication information from the original publication to the
cloning, to the synchronization.

For information on running the Synchronize Cloned Target Data concurrent program,
see Section C.9.1 on page C-24.

7.3.2.5 Example of Synchronizing Publication Data on a Cloned Source
Synchronizing publication data on a cloned source resolves the following issues
caused by cloning the publication source:

■ The CZ_SERVERS table on the cloned source contains incorrect information in the
LOCAL server entry of the clone.

■ The SOURCE_SERVER_FLAG on the publications target identifies the original
source, not the cloned source as the publication source server.

■ A database link must be established between the publication target and the cloned
source.

■ Target publication records require only one corresponding publication source.

Table 7–2 Example of Missing Source Publication

Source A Target B
Target C
 (cloned from B)

Original publication:

PUBLICATION_ID 1000 2000

REMOTE_PUBLICATION_
ID

2000 1000

SERVER_ID B B

After Cloning Target B to Target C:

PUBLICATION_ID 1000 2000 2000

REMOTE_PUBLICATION_
ID

2000 1000 1000

SERVER_ID B B B

After Synchronizing Source A and Target C:

PUBLICATION_ID 1000 2000 2000

REMOTE_PUBLICATION_
ID

2000 1000 updated

SERVER_ID B B updated

PUBLICATION_ID 1001 2000

REMOTE_PUBLICATION_
ID

2000 1001

SERVER_ID C C

Note: Oracle does not support publishing from multiple source
database instances to a single target database instance. It is advisable
to decommission the original source when synchronizing the cloned
source.

Synchronizing Publication Data

7-10 Oracle Configurator Implementation Guide

Figure 7–4 illustrates a Model that is originally published from Source A to Target C.

Figure 7–4 Publication Before Cloning the Source Database

Table 7–3 illustrates some of the entries for database instances A and C in the CZ_
SERVERS table of Source A before cloning.

Table 7–4 illustrates some of the entries for database instances A and C in the CZ_
SERVERS table of Target C before cloning.

The SOURCE_SERVER_FLAG on Target C is set to 1, meaning Target C recognizes
Source A as its publication source.

If configuration models are published from Source A to Target C, and then Source A is
cloned to create Source B, the following inconsistencies occur:

■ The LOCAL entry in the CZ_SERVERS table of Source B must be updated by
removing the entry for Source A and completing the identification for Source B.

■ The publication record on Source A and its clone on Source B both point to
Target C which is incorrect.

■ Publication records on Target C continue to identify Source A as the publication
source server.

Figure 7–5 illustrates Source B as a clone of Source A.

Table 7–3 CZ_SERVERS Entries on Source A Before Cloning

Server
LOCAL_
NAME

SERVER_
LOCAL_ID HOSTNAME

DB_
LISTENER_
PORT

INSTANCE_
NAME

A LOCAL 0 my_serv 1521 A

C SALES 1 my_serv 1521 C

Table 7–4 CZ_SERVERS Entries on Target C Before Cloning

Server
LOCAL_
NAME

SERVER_
LOCAL_ID HOSTNAME

DB_
LISTENER_
PORT

INSTANCE_
NAME

A source 1 my_serv 1521 A

C LOCAL 0 my_serv 1521 C

Synchronizing Publication Data

Synchronizing Data 7-11

Figure 7–5 Source Server B is Cloned from Source Server A

After cloning, the clone’s CZ_SERVERS table is an exact copy of the original Source A
(see Table 7–3). Source B must be synchronized because its CZ_SERVERS table does
not have a LOCAL entry for Source B.

To synchronize existing publications records on Source B with Target C, and publish
new Models from B to C, you must first run the Synchronize Cloned Source Data
concurrent program on Source B. See Section C.9.2, "Synchronize Cloned Source Data"
for more information.

Running the Synchronize Cloned Source Data concurrent program updates the
LOCAL entry in the CZ_SERVERS table on Source B with correct information.
Table 7–5 shows the entries in the CZ_SERVERS table on B after running the
Synchronize Cloned Source Data concurrent program.

Synchronizing Source B has no effect on Target C. By publishing or republishing a
Model from Source B to Target C, the CZ_SERVERS table on Target C is updated.
Table 7–6 shows Source B listed as the publication source in the CZ_SERVERS table on
Target C, with the SOURCE_SERVER_FLAG enabled (set to 1). Both Source A and
Source B can serve as publication source.

Table 7–5 CZ_SERVERS Entries on Server B After Synchronization

Server
LOCAL_
NAME

SERVER_
LOCAL_ID HOSTNAME

DB_
LISTENER_
PORT

INSTANCE_
NAME

B LOCAL 0 my_serv 1521 B

C SALES 1 my_serv 1521 C

Table 7–6 CZ_SERVERS Entries on Target C After Publishing a Model from Source B

Server
LOCAL_
NAME

SERVER_
LOCAL_ID HOSTNAME

DB_
LISTENER_
PORT

INSTANCE_
NAME

SOURCE_
SERVER_
FLAG

A source 1 my_serv 1521 A 1

B source 2 my_serv 1521 B 1

C LOCAL 0 my_serv 1521 C 0

Synchronizing Publication Data

7-12 Oracle Configurator Implementation Guide

If a decision is made not to decommission Source A, and there are configuration
models that were published from A to C, then running the Synchronize Cloned Source
Data concurrent program on Source B removes any cloned publications to prevent
conflict between the two publications sources and allows Source A to continue as the
source for those publications.

Note: Republish and New Copy in the Model Publications page are
disabled for a disabled publication record. Oracle Configurator
Developer users can delete the disabled publication record or edit the
publication’s applicability parameters to re-enable the publication in
Production or Test mode.

CZ Schema Maintenance 8-1

8
CZ Schema Maintenance

Data that is maintained in more than one place is subject to becoming out of synch.
This chapter presents the following processes to help you keep multiple data sources
synchronized:

■ Refreshing or Updating the Production CZ Schema

■ Purging Configurator Tables

■ Redoing Sequences

8.1 Overview
Inventory and Bills of Material data must be maintained in the production instance.
You can maintain the CZ schema with the data in the production instance by:

■ Refreshing or Updating the Production CZ Schema

■ Eliminating any unused data by Purging Configurator Tables

■ Redoing Sequences resets the sequences after the CZ schema has been restored
from a dump file

■ Synchronizing BOM Model Data

8.2 Refreshing or Updating the Production CZ Schema
When a runtime Oracle Configurator is deployed, the data is stored in the CZ schema
directly through networked use. During deployment, further imports are performed to
refresh the CZ schema as Oracle Applications or legacy data changes. The procedures
that perform the import prevent customer-specific groups of fields in the CZ schema
from being altered or nulled out even when other fields in the row are replaced during
an import session.

For additional information about refreshing data in your CZ schema, see
Section 5.2.10, "Refreshing Imported Data" on page 5-12.

8.3 Purging Configurator Tables
Large databases affect performance. For example, large amounts of data in the import
tables may cause data import to fail. The following concurrent programs delete
unnecessary data:

■ Purge Configurator Tables

■ Purge Configurator Import Tables

Purging Configurator Tables

8-2 Oracle Configurator Implementation Guide

■ Purge To Date Configurator Import Tables

■ Purge To Run ID Configurator Import Tables

8.3.1 Purge Configurator Tables
The Purge Configurator Tables concurrent program physically deletes all
logically-deleted records in the tables and subschemas of the CZ schema.

Each CZ schema table has delete-propagation rules that affect the results of running
the Purge Configurator Tables concurrent program.

The Purge Configurator Tables concurrent program:

■ Propagates deletions to additional records not marked as deleted, such as
physically deleting children of a logically-deleted PS_NODE record.

■ Physically deletes all EXPRESSION_NODE records attached to a deleted rule.

■ Does not physically delete a record that is logically-deleted if there is a
non-deleted reference to that record, such as preserving a deleted PS_NODE that is
used in a non-deleted rule.

See Section C.1.3, "Purge Configurator Tables" on page C-3 for details on running this
concurrent program.

8.3.2 Purge Configurator Import Tables
Import performance can be improved if you purge the import tables in your database
instance. The Purge Configurator Import Tables concurrent program deletes data in all
CZ_IMP tables. The concurrent program also deletes the corresponding data in the
CZ_XFR_RUN_INFOS and CZ_XFR_RUN_RESULTS control tables.

See Section C.1.4, "Purge Configurator Import Tables" on page C-4 for running this
concurrent program.

8.3.3 Purge To Date Configurator Import Tables
If you want to improve import performance but also retain recent import information,
then the Oracle Configurator Administrator should run the Purge To Date
Configurator Import Tables concurrent program. Unlike the Purge Configurator
Import Tables concurrent program that deletes all data in the CZ_IMP tables, the
Purge To Date Configurator Import Tables concurrent program only deletes the oldest
data in the CZ_IMP tables. The data for the specified past number of days is retained.
The concurrent program also deletes the corresponding data in CZ_XFR_RUN_INFOS,
and CZ_XFR_RUN_RESULTS control tables.

See Section C.1.5, "Purge To Date Configurator Import Tables" on page C-4 for details
on running this concurrent program.

8.3.4 Purge To Run ID Configurator Import Tables
If you want to improve import performance but also retain recent import run
information, then the Oracle Configurator Administrator should run the Purge To Run
ID Configurator Import Tables concurrent program. Purge To Run ID Configurator

Note: A data import session must not be running when there is a
purge concurrent program request. Similarly, a purge session must not
be running when there is a data import concurrent program request.

Redoing Sequences

CZ Schema Maintenance 8-3

Import Tables only deletes data in the CZ_IMP tables up to the specified input Run ID.
The concurrent program also deletes the corresponding data in the CZ_XFR_RUN_
INFOS, and CZ_XFR_RUN_RESULTS control tables

See Section C.1.6, "Purge To Run ID Configurator Import Tables" on page C-5 for
details on running this concurrent program.

8.4 Redoing Sequences
After restoring a schema from a backup file, you should refresh the database
sequences. The REDO_SEQUENCES procedure is invoked by the packages CZ_
MANAGER.sql and CZ_subschema_MGR.sql (for example, CZ_PS_MGR.sql).

Depending on the parameters that you enter, the REDO_SEQUENCES procedure
either alters or recreates the sequence objects in the database that are used to allocate
primary keys for tables in the CZ schema. The procedure checks the current high
primary key value in the database and sets a new start value that is greater than the
current high value. The procedure uses the default incremental value specified by
OracleSequenceIncr setting in the CZ_DB_SETTINGS table unless you specify a new
increment. See Section 4.4.3.17, "OracleSequenceIncr" on page 4-12 for more
information.

Redoing Sequences

8-4 Oracle Configurator Implementation Guide

Part III
Integration

Part III presents integration information for setting up Oracle Configurator with other
Oracle Applications or a custom application as described in Section 1.3, "Integration
Tasks" on page 1-3. Part III contains the following chapters:

■ Chapter 9, "Session Initialization"

■ Chapter 10, "Session Termination"

■ Chapter 11, "Batch Validation"

■ Chapter 12, "Custom Integration"

■ Chapter 13, "Pricing and ATP in Oracle Configurator"

■ Chapter 14, "Multiple Language Support"

Session Initialization 9-1

9
Session Initialization

This chapter describes the format, parameters, and use of the initialization message for
the runtime Oracle Configurator, including information about:

■ Definition of Session Initialization

■ Responsibilities of the Host Application

■ Setting Parameters

– Parameter Syntax

– Typical Parameter Values

– Minimal Test of Initialization

– Parameter Validation

– Logging of Parameter Use

■ Initialization Parameter Types

– Login Parameters

– Model Identification Parameters

– Model Publication Identification Parameters

– Support of Multiple Instantiation

– Return URL Parameter

– Pricing Parameters

– ATP Parameters

– Arbitrary Parameters

– Parameter Compatibility

■ Initialization Parameter Descriptions

Note: If your host application is part of Oracle Applications, then the
initialization message is already defined, and you do not need to
define it yourself. However, this chapter may be of great value to you
in understanding how that initialization message calls the runtime
Oracle Configurator.

If your host application is a custom application, then you must define
your own initialization message, as described in this chapter.

Overview

9-2 Oracle Configurator Implementation Guide

9.1 Overview
See Chapter 2, "Configurator Architecture" for an explanation of the interaction
between the elements discussed in this chapter.

In a typical host application (such as a web store), a button, tab, or similar control is
coded so that it launches the runtime Oracle Configurator, allowing the end user to
configure a model of a product or service. For the purposes of this explanation, think
of this control as "the Configure button". This chapter describes how to make the
Configure button select the wanted configuration model and user interface in the
runtime Oracle Configurator.

9.1.1 Definition of Session Initialization
Session initialization takes place when your host application calls the runtime Oracle
Configurator and renders your configuration model in the user interface you have
specified. The initialization message allows a host application to start a configuration
session with specified characteristics.

When you set the parameters of the initialization message in your host application,
your parameters handle the types of responsibilities listed in Section 9.3, "Initialization
Parameter Types" on page 9-6.

When your host application calls the runtime Oracle Configurator, the initialization
message is sent to the Oracle Configurator Servlet, using the HTTP POST method.
(POST is used in preference to GET to accommodate the length of the message).

See Section 2.2.1.3, "Invocation of Oracle Configurator by Host Application" on
page 2-3 for a description of how the initialization message is routed, depending on
the requirements of the host application, and the type of user interface.

The initialization message is written in XML, and has <initialize> as its document
element. You must specify the parameters for <initialize> to determine the state in
which the runtime Oracle Configurator opens. See Section 9.2, "Setting Parameters" on
page 9-3 for details.

9.1.2 Responsibilities of the Host Application
The responsibilities of the host application for initializing and integrating the runtime
Oracle Configurator are:

■ Providing end users with a means (such as a Configure button) of posting the
initialization message to the Oracle Configurator Servlet. See Section 9.2, "Setting
Parameters" on page 9-3 for details.

■ Handling initialization of the runtime Oracle Configurator, to prepare it for your
user’s configuration session. See Section 2.2.1.3, "Invocation of Oracle
Configurator by Host Application" on page 2-3 for background.

■ Disabling visible functions in the surrounding host application that would confuse
the user while interacting with the runtime Oracle Configurator.

■ Handling the output from the return URL (as described in Section 9.3.5, "Return
URL Parameter" on page 9-10), and closing the configurator window by resetting
its frame’s location property.

■ Handling termination of the runtime Oracle Configurator, to return control and
results to the host application when your user closes the window. See
Section 10.1.2, "Definition of Session Termination" on page 10-1 for background.

Setting Parameters

Session Initialization 9-3

You may be able to provide your host application with improved performance by
preloading the Oracle Configurator Servlet, which involves providing an initialization
message in a text file. The name of the text file is specified with the OC Servlet
property cz.uiservlet.pre_load_filename, as described in the Oracle
Configurator Installation Guide. For details on preloading with an initialization message,
see the Oracle Configurator Performance Guide.

9.2 Setting Parameters
You specify <initialize> and its parameters as the value of an XML message that is
passed to the Oracle Applications Framework, as described in Section 2.2.1.3,
"Invocation of Oracle Configurator by Host Application" on page 2-3. The Oracle
Applications Framework is called through the URL specified in the profile option
BOM: Configurator URL of UI Manager. See the Oracle Configurator Installation Guide
for details about setting profile options. For more information on the Oracle
Applications Framework, see the Oracle Applications Framework Release 11i
Documentation Road Map (Metalink Note # 275880.1).

9.2.1 Parameter Syntax
All parameters to the XML initialization message are specified as name-value pairs,
using attributes of the <param> document element, in the form:

<param name="parameter_name">parameter_value</param>

Example 9–1 on page 9-3 shows the basic syntax for specifying the Oracle
Configurator Servlet’s URL and the initialization message as you would typically use
them in your host application. The parts that you need to modify are typographically
emphasized.

Example 9–1 Syntax of initialization message in HTML context

...
<script language="javascript" >
function init() {document.test1.submit();}
</script>
<body onload="init();">
<form
action="URL_of_OC_Servlet"
method="post" id="test1" name="test1">
<input type="hidden" name="XMLmsg" value=
'<initialize>
<param name="parameter_1_name">parameter_1_value</param>
<param name="parameter_n_name">parameter_n_value</param>
</initialize>'>
</form>
</body>
...

When a Web page containing the kind of HTML coding shown in Example 9–1 on
page 9-3 is rendered in a browser, the initialization message is posted to the URL of the
Oracle Configurator Servlet, as described in Section 2.2.1.3, "Invocation of Oracle
Configurator by Host Application" on page 2-3.

See Example 9–2 on page 9-5 for some typical values for the parameters, and
Example 9–3 on page 9-5 for a test page that puts the values in context.

Setting Parameters

9-4 Oracle Configurator Implementation Guide

■ Be aware that XML permits you to use either single or double quotation marks
around the value of an element’s attribute, so you might also write:

"<initialize>
 <param name='parameter_name'>parameter_value</param>
</initialize>"

■ You can only insert a given parameter once in the initialization message. If you
insert the same parameter more than once, the last occurrence of the parameter is
processed, and any preceding occurrences are ignored. This is important to
remember when you specify Custom Initialization Parameters in the Configurator
Preferences page in Oracle Configurator Developer, as described in the Oracle
Configurator Developer User’s Guide. These custom initialization parameters are
prepended to the parameters provided by Configurator Developer itself during a
test session. Custom parameters that duplicate Configurator Developer
parameters are thus ignored.

■ If you need to include non-ASCII characters in your initialization parameters, then
specify the required character set as the value of the charset parameter in the
meta element of your HTML page. Several examples follow:

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<meta http-equiv="Content-Type" content="text/html; charset=EUC-JP">

9.2.1.1 Omitting Parameters or Values
If you omit a parameter entirely from the initialization message, then the parameter is
ignored by the runtime Oracle Configurator.

However, if a parameter has a default value, then you must either accept the effect of
the default, or override the default with a specified value. The default values for the
parameters are provided in Section 9.4, "Initialization Parameter Descriptions" on
page 9-13.

9.2.2 Typical Parameter Values
Example 9–2 on page 9-5 shows an example of a basic set of initialization parameters,
illustrating the types of responsibility shown in Table 9–2, " Types of Initialization
Parameters" on page 9-6.

See Example 9–1 on page 9-3 for the syntax of the initialization message, and
Example 9–3 on page 9-5 for a test page that puts the values in context.

See Section 9.4, "Initialization Parameter Descriptions" on page 9-13 for the complete
list of valid parameters to the initialization message.

Note: If you include a parameter in the initialization message, do not
leave its value empty. Doing so causes an error when the initialization
message is processed. If you omit the value of a parameter, then the
runtime Oracle Configurator generates an error message indicating
which parameter is missing a value. The message appears in the
browser window, and in the servlet’s session log.

Setting Parameters

Session Initialization 9-5

Example 9–2 Basic XML initialization parameters

<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>
 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
 <param name="return_url">http://www.mysite.com:8802/servlet/Checkout</param>
</initialize>

Table 9–1 on page 9-5 explains the parameters used in Example 9–2 on page 9-5.

9.2.3 Minimal Test of Initialization
Example 9–3 on page 9-5 shows the HTML for a minimal web page that calls the
runtime Oracle Configurator. Example 9–3 combines the invocation of the runtime
Oracle Configurator shown in Example 9–1 on page 9-3 with the initialization message
parameters shown in Example 9–2 on page 9-5. (For simplicity, Example 9–3 omits the
return_url parameter, which is shown in Example 9–4 on page 9-10.)

You can use this test page as a stand-in for your host application, by opening it in a
browser. You must substitute your own site-specific values for the parameters
database_id and ui_def_id. You must also provide a site-specific host name and
port for the action attribute of the form element in Example 9–3.

Example 9–3 Minimal HTML for invoking the Runtime Oracle Configurator

<html>
<head>
<title>Minimal Configurator Test</title>
</head>
<script language="javascript" >
function init() {document.test1.submit();}
</script>
<body onload="init();">
<form
action="http://www.mysite.com:8802/configurator/oracle.apps.cz.servlet.UiServlet"
method="post" id="test1" name="test1">
<input type="hidden" name="XMLmsg" value=

Table 9–1 Explanation of initialization parameters in Example 9–2

Parameter type Name Description

Login database_id The DBC file that identifies the login database.

Login user The user ID of the login user.

Login pwd The password of the login user.

Login calling_application_id The ID of the host application.

Login responsibility_id The responsibility of the login user.

Configuration ui_def_id The ID of the UI of the model to be configured.

Configuration ui_type The type of the UI identified by ui_def_id.

Return return_url The URL of the Return URL servlet.

Initialization Parameter Types

9-6 Oracle Configurator Implementation Guide

'<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>
 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
</initialize>'>
</form>
<pre>
Loading...
</pre>
</body>
</html>

9.2.4 Parameter Validation
When your host application calls the runtime Oracle Configurator, the Oracle
Configurator Servlet validates the parameters of the initialization message.

■ There must be a way of connecting to the database, such as the parameter
database_id.

■ There must be a way to choose a Model to be configured, so the initialization
message must include one of the combinations described in Section 9.3.2, "Model
Identification Parameters" on page 9-8.

■ If there is an error processing the initialization message, the results are posted to
the URL specified in the return_url parameter.

Initialization parameters are accessible to Configurator Extensions and custom
applications that use the Configuration Interface Object (CIO), by calling the method
Configuration.getUserParameters(), which is described in the Oracle
Configurator Extensions and Interface Object Developer’s Guide.

9.2.5 Logging of Parameter Use
To determine exactly which values of the initialization parameters were used in a
configuration session, you can examine the configuration session log files for the
Oracle Configurator Servlet. The location and naming of these log files is controlled
with the OC Servlet property cz.uiservlet.logfilename. See the Oracle
Configurator Installation Guide for more information.

9.3 Initialization Parameter Types
This section describes the use of the types of initialization parameters listed in
Table 9–2 on page 9-6. All of the initialization parameters are described alphabetically
in Section 9.4, "Initialization Parameter Descriptions" on page 9-13.

Table 9–2 Types of Initialization Parameters

Type Required? Description See

Login Yes Information required for access to the
proper data, such as database, user, and
password.

Section 9.3.1, "Login
Parameters" on page 9-7

Initialization Parameter Types

Session Initialization 9-7

9.3.1 Login Parameters
To connect the runtime Oracle Configurator to the database, your initialization
message must specify one of the combinations of parameters listed in Table 9–3,
" Initialization Parameters Required for Login" on page 9-7.

For descriptions of the individual parameters, see Section 9.4, "Initialization Parameter
Descriptions" on page 9-13.

You can use the same set of login parameters for both legacy (DHTML) and generated
(HTML-based) UIs. If you do, use the ui_type parameter to distinguish between the UI
types.

Configuration Yes Identification of the Model to be
configured, or of the existing
configuration to be modified.

Section 9.3.2, "Model
Identification
Parameters" on page 9-8

Publication Yes, for
published
models

Information required to select the
correct Model publication.

Section 9.3.3, "Model
Publication
Identification
Parameters" on
page 9-10

Return No, but
recommen
ded

Identification of the return URL that
handles the results from the runtime
Oracle Configurator, such as
configuration outputs.

Section 9.3.5, "Return
URL Parameter" on
page 9-10

Pricing and
ATP

No Identification of the procedures and
interfaces to be used for obtaining
prices and ATP dates.

Section 9.3.6, "Pricing
Parameters" on
page 9-11

Section 9.3.7, "ATP
Parameters" on
page 9-11

Other No Miscellaneous information. Section 9.3.8, "Arbitrary
Parameters" on
page 9-12

Table 9–3 Initialization Parameters Required for Login

Parameter Combination Used to Launch Oracle Configurator From ...

database_id

icx_session_ticket

■ A host application, using Oracle Applications login
authentication

■ Oracle Configurator Developer, by using the Test Model
button

database_id

calling_application_id

responsibility_id

user

pwd

■ A stand-alone test page (such as that shown in Example 9–3
on page 9-5)

■ A custom Web application that does not use Oracle
Applications login authentication. (In this case, Oracle
Configurator constructs an ICX session ticket from the
values provided for user, pwd, calling_application_id, and
responsibility_id.)

Table 9–2 (Cont.) Types of Initialization Parameters

Type Required? Description See

Initialization Parameter Types

9-8 Oracle Configurator Implementation Guide

9.3.2 Model Identification Parameters
There are several different ways in which you can identify the Model to be configured,
or the existing configuration to be modified. In your initialization message, you must
use one of the parameters or a combination of the parameters listed in Table 9–4 on
page 9-8:

For detailed descriptions of the individual parameters, see Section 9.4, "Initialization
Parameter Descriptions" on page 9-13.

9.3.2.1 Identifying the User Interface Definition
Parameter to specify:

■ ui_def_id

Using this parameter creates a new configuration. It is most useful for identifying a
Model created entirely in Oracle Configurator Developer. It is also useful for
specifying a particular UI out of several that may be available for a Model, whether or
not the Model was created entirely in Configurator Developer.

This ID identifies a User Interface created in Configurator Developer. The User
Interface includes identification of the Model to be configured (which is associated
with configuration rules).

9.3.2.2 Identifying the Configuration
Parameters to specify:

■ config_header_id

■ config_rev_nbr

Using this combination of parameters restores an existing saved configuration, and
thus also the model used to create the configuration.

The Configuration Header ID is the main identifier of an existing configuration record
previously created and saved by your host application or another application that
knows how to save configurations to the CZ schema, such as the runtime Oracle
Configurator. The Configuration Revision Number distinguishes among particular
saved configurations sharing the same header information.

Table 9–4 Model Identification Parameters

Method for Configuration
Identification Initialization Parameters Described in ...

User Interface ui_def_id Section 9.3.2.1 on page 9-8

Configuration config_header_id

config_rev_nbr

Section 9.3.2.2 on page 9-8

Model For Imported BOM Models:

■ organization_id

■ inventory_item_id

For Models created in
Configurator Developer:

■ product_id

Section 9.3.2.3 on page 9-9

Initialization Parameter Types

Session Initialization 9-9

9.3.2.3 Identifying the Model
The parameters you should use to identify the configuration model depend on
whether the model is an imported BOM Model or a Model created in Configurator
Developer.

Imported BOM Models
Parameters to specify:

■ organization_id

■ inventory_item_id

Using this combination of parameters creates a new configuration. It is only useful for
identifying a Model that was originally created in another application (such as Oracle
Applications Bills of Materials) and then imported into Oracle Configurator
Developer.

Your host application must determine which Model to configure and be able to
identify it by Inventory Item ID and Organization ID. See the individual descriptions
of these parameters for more detail.

For backward compatibility only, you may need to specify these parameters:

■ context_org_id instead of organization_id

■ model_id instead of inventory_item_id

Models Created in Configurator Developer
Parameters to specify:

■ product_id

■ config_effective_usage (for custom applications only)

■ publication_mode (for custom applications only)

If the root of your configuration model is a Model that you created in Oracle
Configurator Developer, and you entered a Product ID when you published the
Model, then you should specify only the product_id in your initialization message to
identify the Model to configure. See the Oracle Configurator Developer User’s Guide for
details about publishing Models

The use of the Product ID to identify the Model requires the additional specification of
the Usage and Mode for publication, according to the following conditions:

■ If the host application is a custom application (that is, not part of Oracle
Applications), then you must also pass publication_mode and config_effective_
usage in the initialization message.

– If you do not pass config_effective_usage, then Oracle Configurator uses the
default value of this parameter, which is Any Usage.

– If you do not pass publication_mode, then Oracle Configurator uses the
default value of this parameter, which is P (Production mode).

■ If the host application is part of Oracle Applications (such as Order Management),
then Oracle Configurator automatically obtains the Usage and Mode from the
profile options CZ: Publication Usage and CZ: Publication Lookup Mode and adds
the values to its initialization message. Consequently, you do not have to specify
the parameters yourself.

Initialization Parameter Types

9-10 Oracle Configurator Implementation Guide

9.3.3 Model Publication Identification Parameters
If your Model has been published, then you need to identify the specific Model
publication that you want to configure. This requires that you specify publishing
applicability parameters in your initialization message, in addition to those that
identify the Model (which are described in Section 9.3.2, "Model Identification
Parameters" on page 9-8).

To determine the Model publication to display, you must specify in your initialization
message one or more of the applicability parameters listed in Table 9–5 on page 9-10.
These initialization parameters correspond to the applicability parameters that you
specify when creating the publication in the Publications area of the Repository in
Oracle Configurator Developer. See Chapter 16, "Publishing Configuration Models"
and the Oracle Configurator Developer User’s Guide for more information about
publishing.

9.3.4 Support of Multiple Instantiation
This following parameter indicates whether a host application supports multiple
instantiation:

■ sbm_flag

At runtime, Oracle Configurator checks this flag to see if the host application supports
multiple instantiation. If this parameter is present in the initialization message, the
model is launched regardless of its type. If the parameter is not present, users are
prevented from working with the PTO model and its references to the BOM models
under the root model. A message is returned informing the end user that the host
application does not support multiple instantiation.

9.3.5 Return URL Parameter
The return URL is the fully qualified URL of a Java servlet installed on your web
server that implements the behavior that you want after the user has ended the
configuration session.

■ return_url

The following fragment shows the use of this parameter:

<param name="return_url">http://www.mysite.com:8802/servlets/Checkout</param>

Example 9–4 on page 9-10 shows the use of this parameter in an initialization message,
added to the HTML from Example 9–3 on page 9-5.

Example 9–4 HTML for Invoking the Runtime Oracle Configurator with Return URL

<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>

Table 9–5 Initialization Parameters for Publishing Applicability

Initialization Parameter OCD Publishing Parameter

calling_application_id Applications

config_effective_usage Usages

config_model_lookup_date Valid From/Valid To

publication_mode Mode

Initialization Parameter Types

Session Initialization 9-11

 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
 <param name="return_url">http://www.mysite.com:8802/servlets/Checkout</param>
</initialize>

The URL specification in the return_url parameter must stop at the name of the
servlet class. You cannot pass parameters to the class in this URL (for instance, with
the classname?parameter=value syntax). The return URL servlet should only get
data from the termination message, which is passed to it as the value of the XMLmsg
argument.

The termination message is sent to the return URL when a configuration session is
terminated. This occurs in the event of normal termination, cancellation by the end
user, or exceptions.

The return URL servlet is installed in your web server’s servlet directory, whose
location is not dependent on Oracle Configurator.

See Section 10.6, "The Return URL" on page 10-10 for details on the implementation of
the return servlet.

9.3.6 Pricing Parameters
These parameters are used when the runtime Oracle Configurator calls existing APIs
to get pricing data for configured items.

Because these parameters are designed to be used with an interface using callback
procedures, they are also referred to as callback pricing parameters.

This release of Oracle Configurator assumes that you are using Oracle Applications
Release 11i and Oracle Advanced Pricing (QP), or your own callback pricing
procedures that call it.

To use callback pricing, provide the following set of parameters in your initialization
message:

■ pricing_package_name

■ configurator_session_key

■ either price_mult_items_proc, price_mult_items_mls_proc, or price_single_item_
proc

For descriptions of the individual parameters, see Section 9.4, "Initialization Parameter
Descriptions" on page 9-13.

See Chapter 13, "Pricing and ATP in Oracle Configurator" for details on the use of
these parameters. See Section E.1, "Pricing and ATP Callback Procedures" on page E-1
for examples of procedures that might be specified by these parameters.

9.3.7 ATP Parameters
These parameters are used when the runtime Oracle Configurator calls existing APIs
to get ATP (Available To Promise) data for configured items.

Because these parameters are designed to be used with an interface using callback
procedures, they are also referred to as callback ATP parameters.

This release of Oracle Configurator assumes that you are using Oracle Applications
Release 11i.

Initialization Parameter Types

9-12 Oracle Configurator Implementation Guide

To use callback ATP, provide these parameters:

■ atp_package_name

■ configurator_session_key

■ get_atp_dates_proc

■ requested_date (optional, defaults to SYSDATE)

■ warehouse_id

■ and one of the following:

■ customer_id and customer_site_id

■ ship_to_org_id

For descriptions of the individual parameters, see Section 9.4, "Initialization Parameter
Descriptions" on page 9-13.

See Chapter 13, "Pricing and ATP in Oracle Configurator" for details on the use of
these parameters. See Section E.1, "Pricing and ATP Callback Procedures" on page E-1
for examples of procedures that might be specified by these parameters.

9.3.8 Arbitrary Parameters
You can use the <param> document element to send arbitrary parameters that are not
already provided, or that may be required for particular applications. You would
specify the arbitrary parameter as a name-value pair, using the syntax described in
Section 9.2.1, "Parameter Syntax" on page 9-3:

<param name="parameter_name">parameter_value</param>

For example:

<param name="org_home_page">http://www.oracle.com</param>

Such arbitrary parameters are not processed by the UI Server, but are passed to the
Oracle Configuration Interface Object (CIO), thus making them available to
Configurator Extensions. (See the Oracle Configurator Extensions and Interface Object
Developer’s Guide for information about obtaining a list of the initialization parameters
passed).

While the architecture of Oracle Configurator allows for the possibility of validating
XML parameters against a DTD, this is not currently enforced.

9.3.9 Parameter Compatibility
Initialization parameters are backwardly compatible. A host application can continue
to use the initialization message parameters provided for a previous release with the
same results, unless a parameter has been replaced or withdrawn, thus making it
obsolete.

Obsolete parameters in the initialization message are ignored by Oracle Configurator.
Your host application does not need to remove these parameters from the initialization
message, but they have no effect on the initialization of Oracle Configurator.

Obsolete parameters are listed in the latest About Oracle Configurator documentation on
Metalink, Oracle’s technical support Web site.

Initialization Parameter Descriptions

Session Initialization 9-13

9.4 Initialization Parameter Descriptions
This section lists alphabetically all the parameters of the initialization message. The
use of parameters in the initialization message is described in Section 9.2, "Setting
Parameters" on page 9-3. The parameters are summarized in Table 9–6 on page 9-13.

Table 9–6 Initialization Parameters for Oracle Configurator

Name Page

alt_database_name on page 9-14

application_id on page 9-14

apps_connection_info on page 9-14

atp_package_name on page 9-15

calling_application_id on page 9-15

client_header on page 9-15

client_line on page 9-16

client_line_detail on page 9-16

config_creation_date on page 9-16

config_effective_date on page 9-16

config_effective_usage on page 9-17

config_header_id on page 9-17

config_model_lookup_date on page 9-17

config_rev_nbr on page 9-17

configurator_session_key on page 9-17

context_org_id on page 9-17

customer_id on page 9-18

customer_site_id on page 9-18

database_id on page 9-18

get_atp_dates_proc on page 9-18

icx_session_ticket on page 9-18

inventory_item_id on page 9-18

jrad_standalone on page 9-18

model_id on page 9-19

model_quantity on page 9-19

organization_id on page 9-20

price_mult_items_mls_proc on page 9-21

price_mult_items_proc on page 9-21

price_single_item_proc on page 9-21

pricing_package_name on page 9-21

product_id on page 9-21

publication_mode on page 9-22

pwd on page 9-22

Initialization Parameter Descriptions

9-14 Oracle Configurator Implementation Guide

alt_database_name
A fully specified JDBC connect string or URL, specifying the JDBC driver and the
database alias of the database to connect to.

This parameter is recommended for use during development of your application, as
an alternative to connecting as an Oracle Applications user. It is not recommended for
production deployment. To provide security in a production deployment, you can
disable this parameter by setting the OC Servlet property cz.uiserver.allow_
alt_database_login to false. This setting prevents a login that uses this
parameter. For details on setting this property, see the latest About Oracle Configurator
documentation, on Metalink.

This login parameter is retained for backward compatibility. It is only valid for legacy
Oracle Configurator User Interfaces (DHTML), not for generated User Interfaces
(HTML-based). It must be accompanied by user and pwd.

You must specify thin drivers in the connect string, as shown in the following
example.

Example jdbc:oracle:thin:@server01:1521:vis11

application_id
The ID from FND_APPLICATION.APPLICATION_ID that is the ID of the host
application.

apps_connection_info
If Oracle Configurator is running in one database (e.g., Release 11i), and connecting to
another database to perform pricing, this parameter describes how to connect to the
other database. The apps_connection_info element can contain one of the
following parameters or sets of parameters:

■ database_id

read_only on page 9-22

requested_date on page 9-23

return_url on page 9-23

save_config_behavior on page 9-23

sbm_flag on page 9-23

ship_to_org_id on page 9-24

template_url on page 9-24

terminate_id on page 9-24

terminate_msg_behavior on page 9-25

ui_def_id on page 9-25

ui_type on page 9-25

user on page 9-25

user_id on page 9-26

warehouse_id on page 9-26

Table 9–6 (Cont.) Initialization Parameters for Oracle Configurator

Name Page

Initialization Parameter Descriptions

Session Initialization 9-15

■ database_id and icx_session_ticket

■ user, pwd

■ alt_database_name, user, and pwd

atp_package_name
The name of the PL/SQL interface package that the runtime Oracle Configurator calls
to get ATP information. This parameter is required if the ATP callback interface is to be
used. The particular procedure in the package to be used for calculating ATP dates is
specified by get_atp_dates_proc.

calling_application_id
The ID obtained from FND_APPLICATION.APPLICATION_ID that identifies the host
application. See the latest About Oracle Configurator documentation on Metalink,
Oracle’s technical support Web site, for a list of Oracle Applications that host Oracle
Configurator. The predefined APPLICATION_ID for Oracle Configurator is 708.

When publishing Models from Oracle Configurator Developer, you must select at least
one application from the list of all registered applications. Applications that are not
part of Oracle Applications must be registered in Oracle Applications before they can
use this parameter. (For more information about registering applications, see the Oracle
Applications System Administrator’s Guide).

If the host application is part of Oracle Applications (for example, Order Management,
iStore, or TeleSales), it is important to note that the host application displays the
publication only if:

■ The publication’s Application applicability parameter includes the short name of
the application (for example, ONT is the short name for Oracle Order
Management)

■ The application is assigned to the end user’s Responsibility, which is defined in
Oracle Applications

An Oracle Applications user can often choose one of many Responsibilities, but
each Responsibility is assigned to only one application.

You specify applicability parameters when defining a publication in Configurator
Developer. For more information, see the Oracle Configurator Developer User’s Guide.

When the publication is created, a value for FND_APPLICATION.APPLICATION_ID
is saved in the database. It is very important to ensure that if the development and
production publications are on separate servers, then the custom application must be
registered on both servers; it is your responsibility to verify that the custom
application’s ID is the same on both servers.

See also responsibility_id.

Required.

client_header
A string or number identifying the unit of work for the host application (for example,
an order or quote). Used in conjunction with the methodology for input configuration
attributes, which is described in the Oracle Configurator Methodologies documentation.
See also client_line and client_line_detail.

Initialization Parameter Descriptions

9-16 Oracle Configurator Implementation Guide

client_line
A string or number identifying the particular part of the order or quote that the
configuration is initiated against. Used in conjunction with the methodology for input
configuration attributes, which is described in the Oracle Configurator Methodologies
documentation. See also client_header and client_line_detail.

client_line_detail
A string or number used to provide additional information if client_line does not
provide enough. Used in conjunction with the methodology for input configuration
attributes, which is described in the Oracle Configurator Methodologies documentation.
See also client_header and client_line.

config_creation_date
The host application’s notion of when the configuration is created.

The value for the config_creation_date parameter must be determined by your
host application. It is the host application’s notion of when the configuration was
created.

See also: config_effective_date and config_model_lookup_date.

Oracle Order Management specifies a value for this parameter when invoking Oracle
Configurator, using by default the value of Model Line Creation Date. The values of
config_effective_date and config_model_lookup_date are defaulted.

The value of this parameter must be in the format MM-DD-YYYY-HH-MM-SS. The
values for the tokens in this format are shown in Table 9–7 on page 9-16:

Example <param name="config_creation_date">03-25-2001-19-30-02</param>

Defaults For a new configuration: the value of SYSDATE. For a restored
configuration: the saved value of config_creation_date. If the parameter value does not
include the HH-MM-SS portion, then the default time is assumed to be midnight
(00-00-00).

config_effective_date
The date used to filter effective nodes and rules.

This parameter has the same structure as config_creation_date.

See also: config_creation_date and config_model_lookup_date.

Defaults For a new configuration: the value of config_creation_date. For a restored
configuration: the saved value of config_effective_date.

Table 9–7 Date and Time Format for config_creation_date Parameter

Token Meaning

MM The number of the month

DD The number of the day of the month

YYYY The year

HH The 24-hour representation of the hour

MM The number of minutes

SS The number of seconds

Initialization Parameter Descriptions

Session Initialization 9-17

Not required.

config_effective_usage
The publishing Usage name. The value is not case-sensitive.

Determines the publishing Usage name for the configuration model. See "Models
Created in Configurator Developer" on page 9-9 for more information about using this
parameter.

Default The default value is Any Usage.

Not required.

config_header_id
The identifier for an existing configuration. Only used for retrieving a configuration
previously saved by the runtime Oracle Configurator. Not present if the configuration
was not saved.

The value for the config_header_id parameter is obtained from CZ_CONFIG_
HDRS.CONFIG_HDR_ID in the CZ schema.

config_model_lookup_date
Date to look up the publication for the configuration Model. This parameter has the
same structure as config_creation_date.

See also: config_effective_date and config_model_lookup_date.

Defaults For a new configuration: the value of config_creation_date. For a restored
configuration: the saved value of config_effective_date, or SYSDATE, as determined
by RestoredConfigDefaultModelLookupDate in CZ_DB_SETTINGS; see
Section 4.4.3.23 on page 4-14 for details.

Not required.

config_rev_nbr
The configuration revision number. Only used for retrieving a configuration
previously saved by the runtime Oracle Configurator. Not present if the configuration
was not saved.

The value for the config_rev_nbr parameter is obtained from CZ_CONFIG_
HDRS.CONFIG_REV_NBR in the CZ schema.

configurator_session_key
An application-dependent string that identifies a configuration session, and allows
linking a pricing or ATP request from the runtime Oracle Configurator to the host
application entity that started the configuration session. Examples for creating this key
might be: order header ID with order line ID, or quote ID with quote revision number.

context_org_id
This parameter is for backward compatibility only. Instead of this parameter you
should use its synonym, organization_id.

This parameter is the organization identifier for the BOM exploder. The value for the
context_org_id parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.ORGANIZATION_ID.

Initialization Parameter Descriptions

9-18 Oracle Configurator Implementation Guide

customer_id
When getting ATP dates, the ID of the customer to which the configured product is to
be shipped. Must be used with customer_site_id.

customer_site_id
When getting ATP dates, the ID of the customer site to which the configured product
is to be shipped. Must be used with customer_id.

database_id
The name of the DBC file that contains database connectivity information, without its
filename extension of .dbc. This file can be found in a standard Oracle Applications
installation by calling the PL/SQL function fnd_web_config.database_id. This
parameter must be used with certain other parameters, as described in Section 9.3.1,
"Login Parameters" on page 9-7.

Example myhost01_mysid05

get_atp_dates_proc
The name of the "get ATP dates" procedure to be called from the package specified by
atp_package_name. This parameter is conditionally required; it must be provided if
the ATP callback interface is to be used.

icx_session_ticket
An ICX session ticket encodes an Oracle Applications session.

This is the recommended way for Oracle Applications to call the runtime Oracle
Configurator.

You can use the PL/SQL function cz_cf_api.icx_session_ticket to obtain a
value for this parameter. (See the description of ICX_SESSION_TICKET on page 17-41
for details about the function cz_cf_api.icx_session_ticket.)

When passing an icx_session_ticket, the host application must also pass a
database_id.

inventory_item_id
This parameter is a synonym that replaces model_id.

This parameter is the imported Inventory Item ID for the top-level imported BOM
Model. It is used together with organization_id to identify the configuration model.
The value for this parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.INVENTORY_ITEM_ID.

Conditionally required. No default.

jrad_standalone
Controls whether the user interface for the runtime Oracle Configurator is designed to
stand alone in its own window, or to be part of its host application’s window. The
standalone design includes the page header and global buttons provided by the Oracle
Applications Framework. For more information about the Oracle Applications
Framework, see the Oracle Applications Framework Release 11i Documentation Road
Map (Metalink Note # 275880.1).

The values allowed for this parameter are shown in the following table:

Initialization Parameter Descriptions

Session Initialization 9-19

Default false

model_id
This parameter is for backward compatibility only. Instead of this parameter you
should use its synonym, inventory_item_id.

This parameter is the inventory item identifier for the top-level Model.

The value for the model_id parameter must be determined by your host application.
It is ultimately derived from MTL_SYSTEM_ITEMS.INVENTORY_ITEM_ID.

Conditionally required. No default.

model_quantity
Only BOM Models can be configured with this parameter. The value of this parameter
is a number that indicates how many identical copies of the Model are being
configured. The model quantity may change during a configuration session, so the
final quantity should be read from the associated output item in the termination
message.

Default For a new configuration, the default is 1. The host application may set a
different number.

Notes Be aware of the effect of passing various values for this parameter when:

■ The model is a BOM Model. (Only BOM Models can be configured with the
model_quantity parameter.)

■ There exist configuration rules that contribute some quantity to the numeric value
of the model root (that is, the rules specify that a certain quantity of the model
should be in the configuration).

Background: Only rules defined on non-BOM nodes can make such contributions.
Otherwise, Quantity Cascade calculations result in a numeric cycle.

■ These rules are triggered when the configuration is created, rather than as the
result of user selections.

Background: A rule is triggered when the conditions defined for it are satisfied.

Examples:

■ A BOM Model is modified by adding a Feature with one Option and a Min/Max
of (1,1). A Numeric Rule is defined on that Feature which contributes a value to
the quantity of the root BOM Model. When a configuration is created, the
condition for the rule is satisfied (because a Min/Max of (1,1) results in a
mandatory selection of the Option), and the quantity specified by the Numeric
Rule is contributed.

■ A BOM Model is modified by adding an Integer Feature with an initial value. A
Numeric Rule is defined on that Feature, which contributes the value of the
Feature to the quantity of the root BOM Model. When a configuration is created,

Value Meaning

true The UI for the runtime Oracle Configurator is
rendered with a header and global buttons.

false The UI for the runtime Oracle Configurator is
rendered without a header or global buttons.

Initialization Parameter Descriptions

9-20 Oracle Configurator Implementation Guide

the condition for the rule is satisfied, and the quantity specified by the Numeric
Rule is contributed.

The effects of combining contributions to the model’s quantity with passing a value for
the initialization parameter model_quantity when creating or restoring a
configuration is illustrated in Table 9–8, " Effects of Contributions to Model Quantity"
on page 9-20. Not all of the possible scenarios are illustrated.

In Table 9–8, the following symbols are used:

■ C represents a contribution from a configuration rule to the root BOM model that
exists at the creation of the configuration.

■ NM represents a value for the model_quantity parameter that is passed in
while creating a new configuration.

■ RM represents a value for the model_quantity parameter that is passed in while
restoring a saved configuration.

organization_id
This parameter is a synonym that replaces context_org_id.

This parameter is the imported Organization ID for the top-level imported BOM
Model. It is used together with inventory_item_id to identify the configuration model.
The value for this parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.ORGANIZATION_ID.

If you are using Oracle Applications Order Management, this is the organization
identifier for the BOM exploder. The value should be the same as the profile option
OM: Item Validation Organization.

If you are using a multiple organization structure, your system administrator must
change the OM: Item Validation Organization parameter to be visible and updatable at
the responsibility level. This change allows Order Management to default code and
revenue account information accurately. Note that the Organization ID is not the same
as the Warehouse ID.

Table 9–8 Effects of Contributions to Model Quantity

Contribution Model Quantity Final Quantity

New Configuration:

Case 1 C NM>=C NM

Case 2 C NM<C C, with Validation Failure1

1 These Validation Failure messages are deleted once their text is viewed.

Case 3 None or 1 None 1

Case 4 C>1 None C

Restored Configuration:

Saved In Case 1 C RM>=C RM

Saved In Case 1 C RM<C C, with Validation Failure

Saved In Case 1 None RM RM

Saved In Case 1 C None NM

Initialization Parameter Descriptions

Session Initialization 9-21

price_mult_items_mls_proc
This is the name of the "price multiple items" procedure to be called in an MLS
environment. This parameter should be used by a host application that supports
multiple currencies, not just USD (US dollars).

This parameter is conditionally required; one of this parameter, price_single_item_
proc, or price_mult_items_proc must be provided if pricing callbacks are to be used.

You should use this parameter in preference to price_mult_items_proc, because the
procedure called through this parameter displays prices in the right currency and the
right format.

price_mult_items_proc
The name of the "price multiple items" procedure to be called from the package
specified by pricing_package_name.

This parameter is conditionally required; one of this parameter, price_single_item_
proc, or price_mult_items_mls_proc must be provided if pricing callbacks are to be
used.

You should use price_mult_items_mls_proc in preference to this parameter, because
the procedure called through this parameter displays prices only in USD (US dollars).

This parameter takes precedence over price_single_item_proc.

price_single_item_proc
The name of the "price single item" procedure to be called from the package specified
by pricing_package_name.

This parameter is conditionally required; one of this parameter, price_mult_items_
proc, or price_mult_items_mls_proc must be provided if pricing callbacks are to be
used.

This procedure is not called if price_mult_items_proc is provided.

Deprecated This parameter is now deprecated; use price_mult_items_proc if
possible.

pricing_package_name
The name of the PL/SQL interface package that the runtime Oracle Configurator calls
to get pricing information. This parameter is required if the pricing callback interface
is to be used. The particular procedure in the package to be used for performing
pricing is specified by either price_mult_items_proc or price_single_item_proc.

product_id
For a Model created in Configurator Developer, the value for this parameter is the
string you enter for Product ID when you create the publication record for the Model.

For an imported BOM Model, the value for this parameter is automatically generated
when you create the publication record for the BOM Model (by concatenating the
imported Organization ID with the imported Inventory Item ID) and cannot be
modified. If you are configuring a BOM Model, you should probably use the
combination of organization_id and inventory_item_id instead of this parameter.

If this parameter is included in the initialization message, Oracle Configurator uses the
function CZ_CF_API.CONFIG_MODEL_FOR_PRODUCT to determine which Model
and User Interface should be used.

Initialization Parameter Descriptions

9-22 Oracle Configurator Implementation Guide

The value for this parameter is obtained from CZ_MODEL_
PUBLICATIONS.PRODUCT_KEY in the CZ schema.

The use of the Product ID to identify the model requires the additional specification of
the Usage and Mode for publication. If the host application is a custom application
(that is, not part of Oracle Applications), then you must also pass publication_mode
and config_effective_usage. If the host application is part of Oracle Applications (such
as Order Management), then the Usage and Mode are obtained from profile options
CZ: Publication Usage and CZ: Publication Lookup Mode.

See "Models Created in Configurator Developer" on page 9-9 for more information
about using this parameter.

Defaults Conditionally required. No default.

Examples To make your application use a Configurator Developer Model with the
Product ID of ABC1234, insert the following parameter in your initialization message:

<param name="product_id">ABC1234</param>

To make your application use an imported BOM Model with the organization_id 204
and the inventory_item_id 137, insert the following parameter in your initialization
message:

<param name="product_id">204:137</param>

publication_mode
Determines the publication mode for the configuration model. See "Models Created in
Configurator Developer" on page 9-9 for more information about using this parameter.

The values allowed for this parameter are shown in the following table:

Default The default value is P.

Not required.

pwd
The password to use when logging in to the Oracle Applications database. Use the
Oracle Applications password if you identified the database with the database_id
parameter. Use the database password if you identified the database with the alt_
database_name parameter. Used in conjunction with user.

read_only
If the value is true, the UI Server provides a read-only UI for viewing configurations.
The end user can examine options, but cannot select any. The Finish button is
disabled. The UI Server displays a message at the beginning of the configuration
session, indicating that the session is read-only. If the value is false, the UI Server
provides the normal UI for configuring a model.

Default false

Value Meaning

P Production

T Test

Initialization Parameter Descriptions

Session Initialization 9-23

requested_date
When getting ATP dates, the requested date entered on the order line. The format of
the date must be MM-dd-yyyy. The default value of SYSDATE is used if you do not
specify a different date.

responsibility_id
When logging in to Oracle Applications, the responsibility determines the functions
available to the login user. The value to use for this ID is obtained from FND_
RESPONSIBILITY_VL.RESPONSIBILITY_ID.

The predefined RESPONSIBILITY_ID for the Oracle Configurator Developer
responsibility is 22713. The responsibilities related to Oracle Configurator are
described in Table 15–1, " The Predefined Configurator Developer Responsibilities" on
page 15-2.

See also calling_application_id.

return_url
The fully qualified URL of a Java servlet installed on your Web server that implements
the necessary behavior after a configuration session is terminated. See Section 9.3.5,
"Return URL Parameter" on page 9-10 for details.

Example

<param name="return_url">http://www.mysite.com:8802/servlets/Checkout</param>

save_config_behavior
The values allowed for this parameter are shown in the following table:

Default new_revision

If the value is overwrite, an error is signalled.

sbm_flag
This parameter indicates whether the host application supports multiple instantiation.
To support multiple instantiation the host application must have the appropriate patch
applied.

Value Meaning

never A new configuration is not saved.

new_config A new configuration is saved.

new_revision A new revision of the configuration is saved. (If no existing
revision is found, a new configuration is saved.)

overwrite The existing configuration header and revision is used.

Value Meaning

True The host application has installed the appropriate software
patch that supports multiple instantiation.

False The software patch supporting multiple instantiation has
not been installed, and multiple instantiation is not
supported by the host application.

Initialization Parameter Descriptions

9-24 Oracle Configurator Implementation Guide

A message is returned when an end user attempts to instantiate a component at
runtime, and the host application does not support instantiation. If the sbm_flag is not
passed at all, host application support of multiple instantiation is considered False.

share_dio
See the description of the related servlet property cz.uiservlet.dio_share in the
Oracle Configurator Installation Guide. This initialization parameter overrides that
servlet property, if both are present.

ship_to_org_id
When getting ATP dates, the ID of the organization to which the configured product is
to be shipped. This value is obtained from SHIP_TO_ORG_ID in the OE_ORDER_
LINES_ALL table.

template_url
Used only with DHTML legacy user interfaces.

The URL of the template file that the runtime Oracle Configurator uses when
displaying its initial state. If there need to be multiple templates for multiple
languages or browsers, it is the responsibility of the host application to choose the
correct template. The web page pointed to by the template URL must contain the
content frame and the proxy frame. You may need to account for language-specific
installation directory names, such as OA_HTML/US, when specifying this parameter.

Example To use the template file OA_HTML/US/myFrame.htm, add the following
parameter to the initialization message:

<param name="template_url">http://host:port/OA_HTML/US/myFrame.htm</param>

Defaults For a user interface generated with the Oracle Web Look (also called
browser look and feel (BLAF)): czBlafTemplate.htm. For a user interface generated
with the Oracle Forms Look: czFormTemplate.htm.

terminate_id
Identification number used to support guided selling in Oracle Order Management.
An Applet session running in the UI Server generates a termination ID (which is a
sequence number) and inserts it into the initialization message for the DHTML session
(also running in the UI Server), as the value of this initialization parameter. When the
DHTML session terminates, it stores its XML termination message in the database,
identified by this termination ID. The Applet session then uses the termination ID to
fetch the XML termination message from the database and return it to the host
application (Order Management). For a related subject, see the discussion of the
heartbeat mechanism and guided selling in the Oracle Configurator Installation Guide.

Value Meaning

false Disables sharing the cached version of the Model.
This provides slower loading of the Model, but
reflects the latest changes to the Model.

true Enables sharing the cached version of the Model.
This provides faster loading after the initial loading
of the Model, but does not reflect the latest changes
to the Model.

Initialization Parameter Descriptions

Session Initialization 9-25

terminate_msg_behavior
The values allowed for this parameter are shown in the following table:

It is recommended that host applications using the CZ_CONFIG_DETAILS_V view to
read configuration outputs use brief when the configuration is saved. If the
configuration is not saved, then the outputs and messages are not readable from the
database. If Oracle Configurator receives a connection error or other error, the error
messages that it receives are passed back as messages even if the terminate_msg_
behavior is brief.

ui_def_id
The identifier for a particular User Interface created in Configurator Developer. The
value for the ui_def_id parameter is obtained by:

■ Examining the UI ID column in the User Interface area of the Workbench in Oracle
Configurator Developer

■ Querying CZ_UI_DEFS.UI_DEF_ID in the CZ schema

■ Calling the PL/SQL function cz_cf_api.ui_for_item (see UI_FOR_ITEM on
page 17-51)

ui_type
Indicates the type of user interface being specified for the model being configured. The
type determines the agent that renders the UI in the runtime Oracle Configurator. See
Section 2.2.3, "Runtime UI Types" on page 2-4 for background on the UI types
provided by Oracle Configurator.

The values allowed for this parameter are shown in the following table:

The initialization message for all UI types is posted to the Oracle Configurator Servlet.
For the JRAD type, the UI is rendered by the Oracle Applications Framework. For the
Applet and DHTML types, the UI is rendered by the Oracle Configurator Servlet.

You cannot change the actual type of a UI by changing the value of this parameter.

user
The username to use when logging in. Use the Oracle Applications username if you
identified the database with the database_id parameter. Use the database username if
you identified the database with the alt_database_name parameter. Used in
conjunction with pwd.

Value Meaning

full The entire termination message is passed back to the host
application. This includes prices, if you have used a pricing
interface package (see Chapter 13).

brief No output or messages are passed to the caller.

Value Meaning

Applet The UI is a legacy Applet UI.

DHTML The UI is a legacy DHTML UI.

JRAD The UI is a generated HTML UI.

Initialization Parameter Descriptions

9-26 Oracle Configurator Implementation Guide

user_id
The ID from FND_USER.USER_ID.

warehouse_id
When getting ATP dates, the ID of the organization that is going to ship the configured
product to the customer. This value is obtained from SHIP_FROM_ORG_ID in the OE_
ORDER_LINES_ALL table.

Session Termination 10-1

10
Session Termination

This chapter describes the format and parameters of the termination message for the
runtime Oracle Configurator, including information on:

■ Overview

■ XML Message Structure

■ Submission

■ Cancellation

■ Error

■ The Return URL

10.1 Overview
This section provides an overview of the termination message.

10.1.1 Relationship to Initialization Message
This document describes the role of the termination message primarily in relation to
the initialization message, in Chapter 9, "Session Initialization". See the following
sections for details:

■ Section 9.3.5, "Return URL Parameter"

■ Section 9.1.2, "Responsibilities of the Host Application"

■ "return_url"

■ "terminate_id"

■ "terminate_msg_behavior"

■ "model_quantity"

10.1.2 Definition of Session Termination
Session termination takes place when the Oracle Configurator window is closed by
one of the conditions listed in Table 10–1.

Note: If your host application is part of Oracle Applications, then the
termination message is already defined. You only need to implement a
termination message for custom host applications.

XML Message Structure

10-2 Oracle Configurator Implementation Guide

When the Oracle Configurator window is closed, terminating your user’s
configuration session, the OC Servlet returns the results to your host application in the
form of a termination message, written in XML. You need to understand the structure
of the termination message to be able to extract the necessary data from it in your
return URL servlet. The structure of this message is described in Section 10.2, "XML
Message Structure" on page 10-2.

10.2 XML Message Structure
All outputs in the XML termination message are written as XML elements and
subelements of the <terminate> document element, in the general form:

<terminate>

 <element_name>element_value</element_name>

 <element_name>
 <subelement_name>subelement_value</subelement_name>
 </element_name>

</terminate>

The top-level structure of the <terminate> element is illustrated by these excerpts
from its DTD:

...
<!ELEMENT terminate (config_header_id?, config_rev_nbr?, valid_configuration?,
complete_configuration?, exit, config_outputs?, config_messages?)>
...
<!ELEMENT config_outputs (output_option*)>
...
<!ELEMENT config_messages (message*)>
...

Example 10–1 shows the basic structure of a sample XML termination message.
Typographical emphasis and comments have been added to point out the structure;
such comments do not appear in actual termination messages.

Example 10–1 Structure of Termination Message

<terminate>
 <!-- configuration status elements -->
 <config_header_id>1780</config_header_id>
 <config_rev_nbr>2</config_rev_nbr>
 <valid_configuration>true</valid_configuration>
 <complete_configuration>true</complete_configuration>
 <exit>save</exit>
 <config_outputs>

Table 10–1 Termination conditions

Condition Example Explanation

Submission Your user clicks the Finish button. See Section 10.3, "Submission" on
page 10-3

Cancellation Your user clicks the Cancel button. See Section 10.4, "Cancellation" on
page 10-9

Error A connection cannot be made to the
database.

See Section 10.5, "Error" on page 10-9

Submission

Session Termination 10-3

 <option>
 <component_code>143-1490</component_code>
 <quantity>1</quantity>
 <list_price>0.00</list_price>
 <!-- more elements go here -->
 </option>
 <!-- more options go here -->
 </config_outputs>
 <config_messages>
 <message>
 <message_type>error</message_type>
 <message_text>Config header does not exist in database.</message_text>
 </message>
 <!-- more messages go here -->
 </config_messages>
</terminate>

10.3 Submission
Submission occurs after your user closes the Oracle Configurator window by clicking
the Finish button.

The meaning of the Finish button is defined by the context of your host application.
For instance, in a web store, it might mean adding the configured product to your
user’s "shopping cart", or submitting the configured order to your order entry system.

When the Finish button is clicked, the OC Servlet determines whether a return URL
has been specified. If so, the servlet identified by that URL is called, and the results it
generates are passed to your host application for further processing. This is the most
important job of the return URL servlet; it captures the configuration selections of your
user so that your host application can make use of them. For more details, see
Section 10.6, "The Return URL" on page 10-10

After the Oracle Configurator window is closed, your host application must repaint
the frame used by the Oracle Configurator window.

After submission, the termination message provides the host application with data
describing:

■ Section 10.3.1, "Configuration Status"

■ Section 10.3.2, "Configuration Outputs"

■ Section 10.3.3, "Configuration Messages"

If a custom host application wraps the runtime Oracle Configurator in its own
JavaServer Page (as described in Section 2.2.1.4, "Incorporation of Oracle Configurator
in the Host Application’s UI" on page 2-4), then Oracle Configurator posts the
termination message to it by HTTP connections, using the return URL (see
Section 10.6, "The Return URL" on page 10-10). An example of such a host application
is Oracle iStore (IBE).

Note: If you are providing guided selling in Oracle Applications
Order Management, then your host application should obtain the
termination message by using the initialization parameter terminate_
id. See the description of that parameter for details.

Submission

10-4 Oracle Configurator Implementation Guide

If an Oracle Applications Framework host application incorporates the runtime Oracle
Configurator in a region of its own OA Framework page (as described in
Section 2.2.1.4 on page 2-4), then Oracle Configurator leaves the termination message
in the OAPageContext, identified by the transient session key
czTerminateMessage, then redirects to the same page. An example of such a host
application is Oracle Contracts Core (OKC). Note that the termination message may
contain error information (see Section 10.5, "Error" on page 10-9) as well as normal
termination output.

The host application can retrieve the termination message from the OAPageContext,
using the following method, where pageContext is an instance of
oracle.apps.fnd.framework.webui.OAPageContext:

(String) pageContext.getTransientSessionValue("czTerminateMessage");

10.3.1 Configuration Status
The current configuration status is described by the subelements of <terminate>
listed in this section. These subelements are:

■ config_header_id

■ config_rev_nbr

■ complete_configuration

■ exit

■ prices_calculated_flag

■ standard_validation

■ valid_configuration

10.3.1.1 Subelements for Configuration Status
This section describes the configuration status subelements of the <terminate>
element.

config_header_id
The main identifier of an existing configuration. See the description for config_header_
id on page 9-17. This value is displayed in the Oracle Configurator window with the
default label "Configuration Header ID".

config_rev_nbr
The revision number of an existing configuration. See the description for config_rev_
nbr on page 9-17. This value is displayed in the Oracle Configurator window with the
default label "Configuration Revision".

complete_configuration
The value is true if all mandatory option classes (required features) are satisfied. This
value is displayed in the Oracle Configurator window with the default label
"Configuration Complete".

exit
The possible values written for this element are shown in the following table:

Submission

Session Termination 10-5

This value is displayed in the Oracle Configurator window with the default label "Exit
Status".

prices_calculated_flag
Prices are calculated when the user clicks the Summary button. This element tells the
host application whether this calculation has happened in synchronization with the
configuration. The possible values written for this element and their meanings are
shown in the following table:

standard_validation
This element is added to the termination message only if:

■ the configuration session was for batch validation

■ the validation phase of batch validation was skipped

See Section 11.5, "Skipping Batch Validation" on page 11-8 for background.

total_price
Contains the total discounted selling price for all the selected items in the
configuration. The selling price and discounts are determined by the callback pricing
procedure that you have specified for the configuration session. See Chapter 13,
"Pricing and ATP in Oracle Configurator" for details.

Value Meaning

save If the configuration was saved.

cancel If the configuration was cancelled.

error If an error was detected while executing in the UI
Server.

processed If a batch validation message was processed but not
saved.

Value Meaning

true The configuration has not been changed since the end user clicked
the Summary button. That is, the calculated prices are still in
synchronization with the configuration.

false Prices were not calculated after the configuration had been
changed.

This could happen if the end user had never clicked the Summary
button before clicking Finish, or if the user changed the
configuration and did not click the Summary button before
clicking Finish.

In this case, the host application should reprice each configuration
line, to ensure that the proper prices are applied to the
configuration.

Value Meaning

true The standard validation phase of batch validation was executed.

false The standard validation phase of batch validation was skipped.

Submission

10-6 Oracle Configurator Implementation Guide

valid_configuration
The value is true if no error messages are reported for the configuration. This value is
displayed in the Oracle Configurator window with the default label "Configuration
Valid".

10.3.2 Configuration Outputs
The list of options selected by your user during the configuration session is contained
in the <config_outputs> subelement of <terminate>. Each option is enclosed in
<option> tags and contains the elements described in this section. These subelements
are:

■ atp_date

■ atp-rollup-date

■ bom_item_type

■ bom-quantity

■ component_code

■ discounted_price

■ inventory_item_id

■ list_price

■ organization_id

■ parent_line_id

■ quantity

■ selection_line_id

■ uom

Example 10–2 shows an example of configuration outputs in the termination message,
with typographical emphasis and comments added.

Example 10–2 Configuration Outputs in the Termination Message

<terminate>
 <!-- configuration status goes here -->
 <config_outputs>
 <option>
 <selection_line_id>1846</selection_line_id>
 <parent_line_id>1847</parent_line_id>
 <component_code>143-1490</component_code>
 <quantity>1</quantity>
 <list_price>0.00</list_price>
 <inventory_item_id>1490</inventory_item_id>
 <organization_id>204</organization_id>
 <uom>Ea</uom>
 <discounted_price>0.00</discounted_price>
 <atp_date></atp_date>
 </option>
 <!-- more options go here -->
 </config_outputs>
 <!-- configuration messages go here -->
</terminate>

Submission

Session Termination 10-7

10.3.2.1 Subelements for Configuration Outputs
This section describes the subelements for the <config_outputs> subelement of the
<terminate> element.

atp_date
Contains the ATP date. This is calculated by using the ATP procedure specified in the
initialization message. See Section 9.3.7, "ATP Parameters" on page 9-11, and
Chapter 13, "Pricing and ATP in Oracle Configurator".

atp-rollup-date
Provided if ATP is enabled. Contains the ATP date for the entire model.

bom_item_type
Indicates the type of the configured BOM node, using the values shown in Table 10–2.

bom-quantity
Contains the quantity of the BOM Model being configured, as of the time that the
configuration is saved.

component_code
Contains a value extracted from BOM_EXPLOSIONS.COMPONENT_CODE.

discounted_price
Contains the discounted price for the selected option. This is calculated by using the
pricing procedure specified in the initialization message. See Section 9.3.6, "Pricing
Parameters" on page 9-11, and Chapter 13, "Pricing and ATP in Oracle Configurator".

inventory_item_id
Contains the ID for the item, extracted from MTL_SYSTEM_ITEMS.INVENTORY_
ITEM_ID.

list_price
Contains the list price for the selected option. This is calculated by using the pricing
procedure specified in the initialization message. See Section 9.3.6, "Pricing
Parameters" on page 9-11, and Chapter 13, "Pricing and ATP in Oracle Configurator".

organization_id
Contains the organization ID for the item, extracted from MTL_SYSTEM_
ITEMS.ORGANIZATION_ID.

parent_line_id
Contains the value from CZ_CONFIG_ITEMS.CONFIG_ITEM_ID for the parent node
of the configured node. If the parent is the root node, then the value is 0 (zero).

Table 10–2 Values for the Termination Message Element <bom_item_type>

Value Name Meaning

1 BOM_MODEL BOM Model

2 BOM_OPTION_CLASS BOM Option Class

4 BOM_STD_ITEM BOM Standard Item

Submission

10-8 Oracle Configurator Implementation Guide

quantity
Contains the selected quantity for the option.

selection_line_id
Contains the ID of the configuration line. It is the same as CZ_CONFIG_
ITEMS.CONFIG_ITEM_ID in the CZ schema.

uom
Contains the unit of measure.

10.3.3 Configuration Messages
The messages generated by the OC Servlet in response to selections made by your user
during the configuration session are contained in the <config_messages>
subelement of <terminate>. Each message is enclosed in <message> tags and
contains the elements described in this section. These subelements are:

■ component_code, ps_node_id

■ item_name

■ message_text

■ message_type

See Section 10.5, "Error" on page 10-9 for details on how to handle validation failures.

Example 10–3 shows an example of a configuration message in the termination
message, with typographical emphasis and comments added.

Example 10–3 Configuration Messages in the Termination Message

<terminate>
 <!-- configuration status goes here -->
 <!-- configuration outputs go here -->

 <config_messages>
 <message>
 <message_type>error</message_type>
 <message_text>Config header does not exist in database.</message_text>
 </message>
 <!-- more messages go here -->
 </config_messages>

</terminate>

10.3.3.1 Subelements for Configuration Messages
This section describes the subelements for the <config_messages> subelement of
the <terminate> element.

component_code, ps_node_id
If present, one of these elements contains the identifier of the option to which this
message is related. May be absent, if the message was not generated by a node.

item_name
Contains the name of the option to which this message is related.

Error

Session Termination 10-9

message_text
Contains the text of the message.

message_type
Contains the severity level of the message. Possible values include the following:

suggestion
warning
overridable error
error
autoselection
autoexclusion
not satisfied

10.4 Cancellation
Cancellation occurs after your user closes the Oracle Configurator window by clicking
the Cancel button. Control is returned to the host application, and no configuration
information is returned. Validation failure information is not returned in the
termination message for a cancellation. The termination message contains only the
<exit> subelement, with a value of cancel:

Example 10–4 Cancellation in the Termination Message

<terminate>
 <exit>cancel</exit>
</terminate>

10.5 Error
Error occurs after some condition prevents initialization of the Oracle Configurator
window, or submission of the user’s selections. Such conditions might include:

■ Incorrect database connection or user login parameters (see Section 9.3.1, "Login
Parameters" on page 9-7)

■ Lack of any configuration parameters (see Section 9.3.2, "Model Identification
Parameters" on page 9-8)

■ Incorrect type for a parameter

■ A fatal exception in the Configurator Messaging service

If there were validation failures during your user’s configuration session, each failure
on the list of the validation failure objects is returned as a <message> element
describing the failure. Information about the failure is returned to the OC Servlet as an
object of type oracle.apps.cz.cio.ValidationFailure, which you can access
through the Oracle Configuration Interface Object (CIO); see the Oracle Configurator
Extensions and Interface Object Developer’s Guide for details.

Control is returned to the host application, and no configuration information is
returned. As shown in Example 10–5 on page 10-9, any validation failures are returned
as messages in the <config_messages> element and the termination message
contains the <exit> subelement, with a value of error.

Example 10–5 Error Information in the Termination Message

<terminate>
 <valid_configuration>false</valid_configuration>

The Return URL

10-10 Oracle Configurator Implementation Guide

 <complete_configuration>false</complete_configuration>
 <exit>error</exit>
 <config_messages>
 <message>
 <message_type>error</message_type>
 <message_text>Problem processing normal request: Could not post XML message
to result URL:Connection refused</message_text>
 </message>
 </config_messages>
</terminate>

10.6 The Return URL
The program specified by the return URL initialization parameter (return_url)
determines how your host application uses the configuration information produced by
your user’s selections during a session in the Oracle Configurator window. For
demonstration purposes, the return URL program shown in this document is a Java
servlet, but you can use another type of program that performs the same role.

The return URL servlet is called upon termination of a configuration session, if you
have specified the return URL in your initialization message for the Oracle
Configurator window.

The termination message is passed to the return URL as the value of the XMLmsg
argument. The initialization message that was passed to the configurator is also
passed to the return URL, as the value of the INITmsg parameter.

The return URL must perform all middle-tier and database processing of the
configuration and then return HTML that closes the Oracle Configurator window and
continues with the program flow for the host application.

10.6.1 Specifying the Return URL
You specify the identity of your return URL servlet in the XML initialization message,
as the value of the parameter return_url:

Example 10–6 Return URL in the Initialization Message

...
<param name="return_url">http://www.mysite.com:10130/servlets/Checkout</param>
...

The previous example parameter comes from Example 9–4, "HTML for Invoking the
Runtime Oracle Configurator with Return URL" on page 9-10.

See also:

■ Section 9.3.5, "Return URL Parameter" on page 9-10

■ return_url on page 9-23

■ Section 9.2.1, "Parameter Syntax" on page 9-3

10.6.2 Implementing the Return URL
See Example E–3 in Appendix E for an example of a return URL servlet. You can
modify this servlet code for your host application’s requirements.

To use some of the configuration information returned in the termination message (for
instance, the outputs described in Section 10.3.2, "Configuration Outputs" on

The Return URL

Session Termination 10-11

page 10-6), you can write a Java method that obtains the value of an element in the
termination message by using the getTagValue() method defined in the Checkout
servlet.

The following code fragment obtains the value of the <valid_configuration> output:

Example 10–7 Obtaining Values from Termination Message

 String getValidConfig(XMLDocument doc) {
 // get element from termination msg
 return getTagValue(doc, "valid_configuration", null);
 }

Suppose that the following value of the <valid_configuration> output were
provided by the termination message:

<valid_configuration>true</valid_configuration>

When the Checkout servlet is called after submission, it replaces the Oracle
Configurator window with an HTML page like this:

Example 10–8 HTML Output Produced from Termination Message

<html>
<head><title>Checked Out with Valid Configuration</title></head>
<body>
Configuration Valid?: true
</body>
</html>

The Return URL

10-12 Oracle Configurator Implementation Guide

Batch Validation 11-1

11
Batch Validation

This chapter describes using the runtime Oracle Configurator in programmatic mode,
without direct end user interaction, which is called batch validation. This chapter
includes information about:

■ Overview

■ Passing the Batch Validation Message

■ Calling the CZ_CF_API.VALIDATE Procedure

■ Batch Validation Failure

■ Skipping Batch Validation

11.1 Overview
Batch validation allows a host application to perform tasks such as:

■ Validating a BOM-based configuration in the background

■ Determining a configuration quantity

■ Deleting lines from a configured order while keeping the configuration valid

■ Re-validating a previously booked order, if the configuration rules have changed
in the meantime

■ Using a custom user interface

A host application calls batch validation through the CZ_CF_API.VALIDATE PL/SQL
procedure (see Section 11.3 on page 11-3). This procedure passes the batch validation
message to the URL of the OC Servlet (see Section 11.2 on page 11-1).

11.2 Passing the Batch Validation Message
A batch validation message consists of information defining the configuration context
(such as an identifier for the configured model) and a list of configured options. The
message can be used to revalidate a previously saved configuration.

The elements of the batch validation message are described in Table 11–1 on page 11-2.

An example of the batch validation message is provided in Example 11–1 on page 11-2.

Note: Batch validation operates only on options that are BOM Model
Items in Oracle Applications. Your host application must be part of
Oracle Applications to implement batch validation.

Passing the Batch Validation Message

11-2 Oracle Configurator Implementation Guide

Example 11–1 Example of Batch Validation Message

<batch_validate validation_type="validate_order">
 <initialize>
 <param name="context_org_id">204</param>
 <param name="config_creation_date">03-25-2001-19-30-02</param>
 <param name="calling_application_id">300</param>
 <param name="responsibility_id">20559</param>
 <param name="config_header_id">21361</param>
 <param name="config_rev_nbr">1</param>
 <param name="read_only">FALSE</param>
 <param name="save_config_behavior">new_revision</param>
 <param name="database_id">ap115sun_dev115</param>
 </initialize>

Table 11–1 Elements of the Batch Validation Message

Element Description

<batch_validate> Composed of an <initialize> subelement, which initializes
the configuration session, and a <config_inputs> subelement,
which provides the inputs to the configuration (replacing the
inputs provided by an interactive user).

The <batch_validate> element can include the parameter
validation_type, which indicates the type of validation to be
performed.

validation_type Optional parameter to the <batch_validate> element. Values
are:

■ validate_order

This value should be passed when validating orders, such as
is done by Oracle Order Management. This is the default
value.

■ validate_fulfillment

This value should be passed when validating fulfillment
status, such as is done by Oracle Install Base.Batch
validation is never skipped when validation_type is
validate_fulfillment.

This value should not be passed if you want to skip batch
validation. For more information see Section 11.5, "Skipping
Batch Validation".

■ interactive

This value should be passed if you need to conduct a batch
validation session that behaves like an interactive end user
configuration session.

Example:

<batch_validate validation_type="validate_order">

<initialize> Described in Chapter 9, "Session Initialization".

The parameters of the initialization message are described in
Section 9.4, "Initialization Parameter Descriptions" on page 9-13.
See the description of the database_id parameter on page 9-18 for
connectivity information.

<config_inputs> Composed of a list of <option> elements.

<option> Described in Chapter 10, "Session Termination". When an
<option> element is used in a <config_inputs> element,
only the <component_code> and <quantity> elements of the
<option> are used.

Calling the CZ_CF_API.VALIDATE Procedure

Batch Validation 11-3

 <config_inputs>
 <option>
 <component_code>143-1490-1494</component_code>
 <quantity>1</quantity>
 </option>
 <option>
 <component_code>143-297</component_code>
 <quantity>1</quantity>
 </option>
 </config_inputs>
</batch_validate>

11.3 Calling the CZ_CF_API.VALIDATE Procedure
If the host application is written in PL/SQL, it should call the VALIDATE procedure.
CZ_CF_API.VALIDATE is the PL/SQL interface to batch validation. The VALIDATE
procedure packages the inputs into a batch_validate init message and sends it to the
configurator servlet. There are restrictions in the way that PL/SQL can request data
from a URL that requires PL/SQL programs to use the CZ_CF_API.VALIDATE
procedure, instead of passing the XML batch validation message.

For details on the parameters for CZ_CF_API.VALIDATE, see VALIDATE on
page 17-54, in Chapter 17, "Programmatic Tools for Development".

Example 11–2 on page 11-3 shows fragments from a PL/SQL program that calls CZ_
CF_API.VALIDATE.

Example 11–3 on page 11-4 shows a PL/SQL script that calls CZ_CF_API.VALIDATE.

Example 11–2 Calling the CZ_CF_API.VALIDATE Procedure in a Program

...
/*---
Procedure Name : Send_input_XML
Description : sends the xml batch validation message to hostapp that has
 options that are newly inserted/updated/deleted
 from the model.
--*/

PROCEDURE Send_input_XML
 (p_model_line_id IN NUMBER ,
 p_org_id IN NUMBER ,
 p_model_id IN NUMBER ,
 p_config_header_id IN NUMBER , 2003/10/20
 p_config_rev_nbr IN NUMBER ,
 p_model_qty IN NUMBER ,
 p_creation_date IN DATE ,
 p_deleted_options_tbl IN OE_Order_PUB.request_tbl_type
 := OE_Order_Pub.G_MISS_REQUEST_TBL,
 p_updated_options_tbl IN OE_Order_PUB.request_tbl_type
 := OE_Order_Pub.G_MISS_REQUEST_TBL
 x_out_XML_msg OUT NOCOPY LONG ,
 x_return_F OUT NOCOPY VARCHAR2)
...
 l_XML_hdr VARCHAR2(2000)
 l_html_pieces CZ_CF_API.CFG_OUTPUT_PIECES;
 l_option CZ_CF_API.INPUT_SELECTION;
 l_batch_val_tbl CZ_CF_API.CFG_INPUT_LIST;
 l_url VARCHAR2(500):=

Calling the CZ_CF_API.VALIDATE Procedure

11-4 Oracle Configurator Implementation Guide

 FND_PROFILE.Value('CZ_UIMGR_URL');
 l_validation_type CZ_API_PUB.VALIDATE_ORDER;
...
 Create_hdr_XML
 (p_model_line_id => p_model_line_id ,
 p_org_id => p_org_id ,
 p_model_id => p_model_id ,
 p_config_header_id => p_config_header_id ,
 p_config_rev_nbr => p_config_rev_nbr ,
 p_model_qty => p_model_qty ,
 p_creation_date => p_creation_date ,
 x_XML_hdr => l_XML_hdr);

...
CZ_CF_API.Validate(config_input_list => l_batch_val_tbl ,
 init_message => l_XML_hdr ,
 config_messages => l_html_pieces ,
 validation_status => l_validation_status ,
 URL => l_url
 p_validation_type => l_validation_type);

Example 11–3 Calling the CZ_CF_API.VALIDATE Procedure in a Script

set serveroutput on
set verify off

-- Run this query in SQL*Plus, providing input of model id
-- This query is like what the host application might send.
-- The output might go back to some other servlet.

BEGIN
declare
 config_input_list CZ_CF_API.CFG_INPUT_LIST;
 ---- OC Servlet URL needs to be entered here....
 l_url varchar2(100):=
'http://www.mysite.com:10130/configurator/oracle.apps.cz.servlet.UiServlet' ;
 init_message varchar2(4000):='<initialize>';
 config_messages CZ_CF_API.CFG_OUTPUT_PIECES;
 validation_status NUMBER;
 list_indx number := 1 ;
 l_validation_type CZ_API_PUB.VALIDATE_ORDER;

 begtime varchar2(30) := null ;
 endtime varchar2(30) := null ;

--- Build the initialization message.
 TYPE param_name_type IS TABLE OF VARCHAR2(25)
 INDEX BY BINARY_INTEGER;
 TYPE param_value_type IS TABLE OF VARCHAR2(40)
 INDEX BY BINARY_INTEGER;

 param_name param_name_type;
 param_value param_value_type;

Calling the CZ_CF_API.VALIDATE Procedure

Batch Validation 11-5

 l_rec_index BINARY_INTEGER;

 l_context_org_id VARCHAR2(30);
 l_config_creation_date VARCHAR2(30);
 l_two_task VARCHAR2(30);
 l_user VARCHAR2(30);
 l_pwd VARCHAR2(30);
 l_fndnam VARCHAR2(30);
 l_calling_application_id VARCHAR2(30);
 l_responsibility_id VARCHAR2(30);
 l_model_id VARCHAR2(30);
 l_config_header_id VARCHAR2(30);
 l_config_rev_nbr VARCHAR2(30);
 l_gwyuid VARCHAR2(30);
 l_read_only VARCHAR2(30);
 l_save_config_behavior VARCHAR2(30);
 l_save_usage_behavior VARCHAR2(30);
 l_ui_type VARCHAR2(30);
 l_so_line_id VARCHAR2(30);
 l_validation_org_id VARCHAR2(30);
 l_dbc VARCHAR2(30);
 l_model_quantity VARCHAR2(30);
 l_termination VARCHAR2(30);
 l_alt_database_name VARCHAR2(40);

--Options

 l_component_code VARCHAR2(2000);
 l_option_quantity VARCHAR2(30);
 l_test_param VARCHAR2(20);

BEGIN

 param_name(1) := 'context_org_id';
 param_name(2) := 'config_creation_date';
 param_name(3) := 'two_task';
 param_name(4) := 'user';
 param_name(5) := 'pwd';
 param_name(6) := 'fndnam';
 param_name(7) := 'calling_application_id';
 param_name(8) := 'responsibility_id';
 param_name(9) := 'model_id';
 param_name(10) := 'config_header_id';
 param_name(11) := 'config_rev_nbr';
 param_name(12) := 'gwyuid';
 param_name(13) := 'read_only';
 param_name(14) := 'save_config_behavior';
 param_name(15) := 'save_usage_behavior';
 param_name(16) := 'model_quantity';
 param_name(17) := 'database_id';
 param_name(18) := 'terminate_msg_behavior';
 param_name(19) := 'alt_database_name';

 SELECT
 '204', -- corrected value
 '10-16-2000-09-41-12',
 null,
 null,
 null,

Calling the CZ_CF_API.VALIDATE Procedure

11-6 Oracle Configurator Implementation Guide

 null,
 '660',
 '50171',
 '143’, --this is the usual value for &modelId
 null,
 null,
 null,
 null,
 'new_revision',
 null,
 '45',
 'ap123dbs_dom123',
 'brief',
 'jdbc:oracle:thin:@serv01:1521:sid02'
 INTO
 l_context_org_id,
 l_config_creation_date,
 l_two_task,
 l_user,
 l_pwd,
 l_fndnam,
 l_calling_application_id,
 l_responsibility_id,
 l_model_id,
 l_config_header_id,
 l_config_rev_nbr,
 l_gwyuid,
 l_read_only,
 l_save_config_behavior,
 l_save_usage_behavior,
 l_model_quantity,
 l_dbc,
 l_termination,
 l_alt_database_name
 FROM dual ;

 param_value(1) := l_context_org_id;
 param_value(2) := l_config_creation_date;
 param_value(3) := l_two_task;
 param_value(4) := l_user;
 param_value(5) := l_pwd;
 param_value(6) := l_fndnam;
 param_value(7) := l_calling_application_id;
 param_value(8) := l_responsibility_id;
 param_value(9) := l_model_id;
 param_value(10) := l_config_header_id;
 param_value(11) := l_config_rev_nbr;
 param_value(12) := l_gwyuid;
 param_value(13) := l_read_only;
 param_value(14) := l_save_config_behavior;
 param_value(15) := l_save_usage_behavior;
 param_value(16) := l_model_quantity;
 param_value(17) := l_dbc;
 param_value(18) := l_termination;
 param_value(19) := l_alt_database_name;

 l_rec_index := 1;

Calling the CZ_CF_API.VALIDATE Procedure

Batch Validation 11-7

 LOOP

 IF (param_value(l_rec_index) IS NOT NULL) THEN

 init_message := init_message || '<param name=' || '"' ||
param_name(l_rec_index) || '"' ||'>'||
 param_value(l_rec_index)||'</param>';

 END IF;

 EXIT WHEN l_rec_index > 18; -- adjust for number of parameters
 l_rec_index := l_rec_index + 1;

 END LOOP;

 init_message := init_message || '</initialize>';
 init_message := REPLACE(init_message,' ','+');

 dbms_output.enable(buffer_size => 200000);
 dbms_output.put_line(substr(init_message,1,255));
 dbms_output.put_line(substr(init_message,256,255));
 dbms_output.put_line(substr(init_message,512,255));
 dbms_output.put_line(substr(init_message,768,255));
 dbms_output.put_line(substr(init_message,1024,255));
 dbms_output.put_line(substr(init_message,1280,255));

 CZ_CF_API.VALIDATE(config_input_list,init_message,config_messages,validation_
status,l_url,l_validation_type);

 IF(validation_status=CZ_CF_API.CONFIG_PROCESSED)THEN
 dbms_output.put_line('Config processed successfully');
 ELSIF(validation_status=CZ_CF_API.CONFIG_PROCESSED_NO_TERMINATE)THEN
 dbms_output.put_line('Config processed successfully, no termination message');
 ELSIF(validation_status=CZ_CF_API.INIT_TOO_LONG)THEN
 dbms_output.put_line('Init message too long');
 ELSIF(validation_status=CZ_CF_API.INVALID_OPTION_REQUEST)THEN
 dbms_output.put_line('Invalid option request');
 ELSIF(validation_status=CZ_CF_API.CONFIG_EXCEPTION)THEN
 dbms_output.put_line('General config exception');
 ELSIF(validation_status=CZ_CF_API.DATABASE_ERROR)THEN
 dbms_output.put_line('Database error');
 ELSIF(validation_status=CZ_CF_API.UTL_HTTP_INIT_FAILED)THEN
 dbms_output.put_line('UTL_HTTP: initialization failed');
 ELSIF(validation_status=CZ_CF_API.UTL_HTTP_REQUEST_FAILED)THEN
 dbms_output.put_line('UTL_HTTP: request failed');
 ELSE
 dbms_output.put_line('Unknown error');
 END IF;
 l_rec_index := config_messages.FIRST;
 dbms_output.put_line ('Recieved Response from the server follows');

 LOOP
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),1,255))));

Batch Validation Failure

11-8 Oracle Configurator Implementation Guide

 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),256,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),512,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),768,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),1024,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),1280,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),1536,255))));
 dbms_output.put_line(ltrim(rtrim(substr(config_messages(l_rec_
index),1792))));

 EXIT WHEN l_rec_index = config_messages.LAST;
 l_rec_index := config_messages.NEXT(l_rec_index);

 END LOOP;

 dbms_output.put_line ('Servlet URL used follows');
 dbms_output.put_line(ltrim(rtrim(l_url)));

END;
END;
/

11.4 Batch Validation Failure
An end user can determine whether an order fails during batch validation if the
imported order’s quantities are not the same as the quantities in the original order, or
if the quantities changed during an order cycle because the configuration model’s
rules have changed. For example, batch validation is run at booking time. If the
published Model has changed from the initial order creation to booking time, then
batch validation may result in different quantities causing the order to fail. By setting
the profile option CZ: Fail BV if Input Quantities Not Maintained, the end user can
determine whether an order fails. This profile option is used in conjunction with the
validation_type parameter in the Calling the CZ_CF_API.VALIDATE Procedure.

Batch Validation fails if the ordered configured BOM Items (input_list) do not match
the batch validation BOM Items (from a previously processed configuration) and the
profile option CZ: Fail BV if Configuration Changed is set to Yes. If there is a difference
between the ordered configured BOM Items and the batch validation BOM Items, then
the differences are logged to CZ_CONFIG_MESSAGES.

For more information about the profile options, see the Oracle Configurator Installation
Guide.

11.5 Skipping Batch Validation
A significant amount of batch validation processing time can be avoided when the CZ:
Skip Validation Procedure profile option is set. If the profile option is set, then batch
validate calls a customer created PL/SQL callback procedure. This callback procedure
then makes the final decision based on the implementation requirements. For more
information on the CZ: Skip Validation Procedure, see the Oracle Configurator
Installation Guide.

Skipping Batch Validation

Batch Validation 11-9

The decision to skip batch validation is done on the batch server for each batch
validation request. To skip parts of the batch validation process, the following criteria
must be met:

■ There are no input arguments.

■ The skip profile option, CZ: Skip Validation Procedure is set to the name of the
PL/SQL callback function. For more information see the Oracle Configurator
Installation Guide.

■ Effectivity date of the current configuration session is different from the effectivity
date of the restored configuration and:

■ All nodes in the configuration model do not have effective start or end dates
that are in the interval between the old and new effective dates.

■ All rules in the configuration model do not have effective start or end dates
that are in the interval between the old and new effective dates.

■ The publication record of the configuration that is being validated is the same as
that of the saved configuration.

■ The BOM Model quantity has not changed or is not provided in the initialization
string

■ The custom created PL/SQL callback function returns true

When this function returns a value of true, the Batch Validation process does not
perform all of its typical tasks, such as restoring the configuration and validating
any inputs. A new configuration is saved when requested.

■ The validation type is not validate_fullfillment. See Table 11–1, " Elements
of the Batch Validation Message" for details.

11.5.1 PL/SQL Callback
A custom coded PL/SQL callback makes the final decision whether batch validation is
skipped or not. A custom coded PL/SQL callback is needed because Configurator
Extensions can change the configuration model. If there are no Configurator
Extensions and you want to skip batch validation, then you must have a custom coded
PL/SQL callback and enable the CZ: Skip Validation Procedure profile option. For
more information on the CZ: Skip Validation Procedure, see the Oracle Configurator
Installation Guide. Batch validation on its own cannot determine what a Configurator
Extension does.

Example 11–4, "Specification of the PL/SQL Callback Function" shows the function’s
coding details:

Example 11–4 Specification of the PL/SQL Callback Function

PROCEDURE my_skip_val_proc(
 p_root_inv_item_id IN NUMBER
 p_organization_id IN NUMBER
 p_config_creation_date IN DATE
 x_skip_validation OUT NOCOPY VARCHAR2
 x_return_status OUT NOCOPY VARCHAR2
 x_msg_data OUT NOCOPY VARCHAR2)

The PL/SQL callback arguments are described in Table 11–2, " PL/SQL Callback
Arguments":

Skipping Batch Validation

11-10 Oracle Configurator Implementation Guide

11.5.2 PL/SQL Callback and Models that use Configurator Extensions
If you wish to skip batch validation and you have Models that use Configurator
Extensions, then you must consider what the Configurator Extensions do when you
write the callback function. If the Configurator Extension depends on the following,
then the callback function should return a value of false and force validation to
occur:

■ Data held in custom tables that changes from time to time

■ Data in Oracle Applications tables, other than the configuration model’s
definitions, that change from time to time. For example, MTL_SYSTEM_ITEMS
flexfields.

■ Data that is obtained by queries based on the CALLING_APPLICATION_
HEADER_ID or CALLING_APPLICATION_LINE_ID that is provided in the
Configurator initialization message. For example, SO_ORDER_HEADERS
flexfield.

These dependencies could cause a Configurator Extension to make changes to the
configuration and cause a validation failure.

Table 11–2 PL/SQL Callback Arguments

Parameter Data Type Mode Description

p_root_inv_item_id number in Root BOM Model Inventory Item ID

p_organization_id number in Root BOM Model Organization ID

p_config_creation_date date in Configuration creation date

x_skip_validation varchar2 out Must return FND_API.G_TRUE if
validation can be skipped; otherwise,
return FND_API.G_FALSE

x_return_status varchar2 out Must return FND_API.G_RET_STS_
SUCCESS if procedure completed
successfully; otherwise return FND_API.G_
RET_STS_ERROR or FND_API.G_RET_
STS_UNEXP_ERROR if an error occurs
within the procedure

x_msg_data varchar2 out Contains an error message if the procedure
is returning an x_return_status value
of FND_API.G_RET_STS_ERROR or FND_
API.G_RET_STS_UNEXP_ERROR

Custom Integration 12-1

12
Custom Integration

To customize Oracle Configurator in your host application, you may need to modify
certain Oracle Configurator files. This chapter describes:

■ General Directory Structure

■ Files for the Servlet Directory

■ Files for the HTML Directory

■ Files for the Media Directory

As a prerequisite, you must have installed Oracle Configurator. See the Oracle
Configurator Installation Guide for details.

You may wish to move certain files to other locations, to suit your site or host
application requirements. This section describes constraints and guidelines on their
location.

12.1 General Directory Structure
Table 12–1 shows the directories required for the runtime Oracle Configurator, and
their relationship. This general structure applies to all platforms, though the details
may vary by platform. In some cases, the same physical directory may fill more than
one role.

Note that it is not strictly necessary for the Servlet directory to have a separate
physical location, because the files it contains are referenced by environment variables
that you set while installing the runtime Oracle Configurator servlet.

Table 12–1 General Structure of Directories for Oracle Configurator

Directory Role Description

OC Installation The directory in which you install OC, based on your choice of installation
directory in the Oracle Configurator setup program.

Servlet Contains the Java class or archive files that implement the OC Servlet.
Configurator Extensions and Return URL Servlets can be installed here.
See the Oracle Configurator Installation Guide for more information.

HTML Contains the HTML template files that for legacy DHTML user interfaces.

Media Contains the image files used by the runtime Oracle Configurator of your
host application.

Log Contains log files written by the runtime Oracle Configurator. See the
Oracle Configurator Installation Guide for more information about logging.

Files for the Servlet Directory

12-2 Oracle Configurator Implementation Guide

12.2 Files for the Servlet Directory
Table 12–2 shows the files that should be installed in your Servlet directory.

The Servlet directory contains files that must be referenced in the PATH and
CLASSPATH environment variables.

12.3 Files for the HTML Directory
By default, the HTML directory is the directory pointed to by the Oracle Applications
alias OA_HTML.

12.4 Files for the Media Directory
By default, the Media directory is the directory pointed to by the Oracle Applications
alias OA_MEDIA.

The image files in the Media directory are used by the runtime Oracle Configurator to
decorate your customized user interfaces, and also to represent application logic state
in DHTML legacy user interfaces.

These files must be compatible with web browser technology. You cannot use BMP
(Windows bitmap) files in your user interface for the Oracle Configurator window,
because this file format is not compatible with web browsers. The runtime Oracle
Configurator window can use GIF, JPG, and other formats compatible with web
browsers.

Table 12–2 Files for the Servlet Directory

File For Platform Comment

libczlce.so Unix Must be in the LD_LIBRARY_PATH environment
variable parameter for your servlet.

czlce.dll Windows NT Must be in the PATH system environment variable on
the host computer on which the servlet is installed. This
should be set by the OC installation program.

Pricing and ATP in Oracle Configurator 13-1

13
Pricing and ATP in Oracle Configurator

This chapter describes the integration of pricing and ATP with Oracle Configurator. It
includes:

■ Runtime Oracle Configurator Pricing Architecture

■ Runtime Pricing Behavior

■ Integration of Pricing and ATP with Oracle Configurator

■ Controlling Pricing and ATP in a Runtime Oracle Configurator

13.1 Overview
How Oracle Configurator handles pricing and ATP (Available To Promise) data
depends on the type of runtime Oracle Configurator you choose to use. A runtime
Oracle Configurator can be called from a variety of different applications and requires
an interface between the runtime Oracle Configurator and the host application’s
pricing mechanism. For more information on advanced pricing, see Oracle Advanced
Pricing User’s Guide.

13.2 Runtime Oracle Configurator Pricing Architecture
When the host application is part of Oracle Applications, such as Order Management,
pricing data comes from Oracle Advanced Pricing (QP). The QP interface is highly
configurable. Depending on how it is configured, it may be necessary that appropriate
data records are defined in the host application to determine pricing parameters. The
host application must implement the Oracle Configurator pricing interface package, as
described in Section 13.2.2 on page 13-3. Likewise, when the host application is not an
Oracle Applications product, it must implement the Oracle Configurator pricing
interface package, so that the runtime Oracle Configurator knows how to determine
prices.

Therefore, the host application must provide an interface PL/SQL package that
interacts whenever pricing is requested between the runtime Oracle Configurator and
the host application's pricing engine. The runtime Oracle Configurator is displayed

Note: If your host application is part of Oracle Applications, then the
integration with pricing and ATP is already defined. You only need to
implement pricing and ATP for custom host applications. The CZ_
PRICING_STRUCTURES and CZ_ATP_REQUESTS tables must be
populated for custom host applications to integrate with pricing and
ATP.

Runtime Oracle Configurator Pricing Architecture

13-2 Oracle Configurator Implementation Guide

when the user clicks the Configure button in the host application. The runtime Oracle
Configurator calls the pricing interface package to get:

■ List prices for all selectable options in the configuration

■ Selling prices for all selectable options in the configuration

■ Total price for the entire configuration

The browser presents either list prices for all selectable options, or selling prices for all
selected options, and enables you to add a total price.

For more information about the Pricing Callback Interface, see Section 13.2.2 on
page 13-3.

For a list of host applications that support Oracle Configurator, see the latest About
Oracle Configurator documentation on Metalink.

13.2.1 Pricing Callback Interface Package
The host application sends an initialization message to the runtime Oracle
Configurator with the interface package and procedure name. The runtime Oracle
Configurator calls this interface package to get current pricing information for a single
item or a list of items.

The interface package determines the full context in which to call the target pricing
engine. The interface package then calls the pricing engine and captures all of the
results, storing these results in tables (or some other Oracle session-insensitive place)
for future reference when the runtime Oracle Configurator session exits. The runtime
Oracle Configurator does not reference the contents of these tables.

The interface package temporarily writes the list and/or selling prices for the
configuration components in the temporary CZ_PRICING_STRUCTURES table so that
they can be presented to the end user.

The CZ_PRICING_STRUCTURES table does not support pricing rules based on the
fact that items belong to the same instance. Pricing is done per component instance.

The runtime Oracle Configurator saves the configuration information in the
appropriate CZ tables. The runtime Oracle Configurator does not save list or selling
prices. It is up to the host application to save configuration data, list prices, and selling
prices in its own tables. For example, Order Management stores the configuration in
OE_ORDER_LINES_ALL, and stores the pricing data in OE_PRICE_ADJUSTMENTS.
The host application decides whether it is necessary to recalculate prices depending on
the value of the prices_calculated_flag in the runtime Oracle Configurator
termination message.

When the host application calls the runtime Oracle Configurator to edit an existing
configuration, the runtime Oracle Configurator asks the interface package for the
current list and selling prices of the currently selected components.

Figure 13–1, "Runtime Oracle Configurator Pricing Architecture", illustrates this
architecture. Illustrated steps 2 through 5 can be repeated many times. Note that in
Figure 13–1, all of the database symbols refer to the same instance of the CZ schema.

Runtime Oracle Configurator Pricing Architecture

Pricing and ATP in Oracle Configurator 13-3

Figure 13–1 Runtime Oracle Configurator Pricing Architecture

See the Section 13.2.2 on page 13-3 for details about the pricing interface package, and
see Chapter 9, "Session Initialization"and Chapter 10, "Session Termination"for details
about the initialization and termination messages for a runtime Oracle Configurator
session.

13.2.2 Pricing Callback Interface
The pricing callback interface package provides interfaces for these distinct
procedures:

■ Price Multiple Items

■ Price Multiple Items for MLS

The Price Multiple Items procedure returns price information for a group of items.
Table 13–1 describes the parameters for the Price Multiple Items procedure.

The Price Multiple Items MLS procedure returns price information for a group of
items. Table 13–2 describes the parameters for the Price Multiple Items MLS
procedure.

Table 13–1 Price Multiple Items Procedure Parameters

Parameter In/Out Type Required Note

configurator_
session_key

In Varchar2 Required Limit of 50 characters

price_type In Varchar2 Required Values are: LIST, SELLING,
or BOTH

config_total_price Out Number
nocopy

n/a

Table 13–2 Price Multiple Items MLS Procedure Parameters

Parameter In/Out Type Required Note

configurator_session_key In Varchar2(5
0)

Required Limit of 50 characters

Runtime Oracle Configurator Pricing Architecture

13-4 Oracle Configurator Implementation Guide

The parameters of the interface are passed by positional notation, so you can name the
parameters as wanted, as long as you retain the positionality specified in Table 13–1,
Table 13–2.

13.2.2.1 Use of the Database in the Price Multiple Items Procedures
When you specify the Price Multiple Items procedures, Oracle Configurator stores the
list of items to be priced in the database table CZ_PRICING_STRUCTURES. This table
is described in Table 13–3 on page 13-4.

price_type In Varchar2 Required Values are: LIST,
SELLING or BOTH

config_total_price Out Number
nocopy

n/a

currency_code Out Varchar2
nocopy

n/a

thousands_separator Out Varchar2
nocopy

n/a

decimal_separator Out Varchar2
nocopy

n/a

positive_currency_format Out Varchar2
nocopy

n/a

negative_currency_format Out Varchar2
nocopy

n/a

precision Out Varchar2
nocopy

n/a

Table 13–3 CZ_PRICING_STRUCTURES Interface Table

Column Name
Data
Type Null? Description

CONFIGURATOR_
SESSION_KEY

Varchar2 Not Null Limit of 50 characters.

Primary key. Identifies a configurator session.
Only one configuration can be handled in the
session.

SEQ_NBR Number Not Null Primary key. Sequence number of the item in the
list of items.

PS_NODE_ID Number Limit of 9 digits.

PS_NODE_ID is a foreign key reference into the
CZ_PS_NODES table, which defines the
"configuration" identity of the object.

ITEM_KEY Varchar2 Not Null Limit of 2000 characters.

ORIG_SYS_REF for imported items or PS_NODE_
ID for non-imported items.

ITEM_KEY_TYPE Number Not Null Limit of 9 digits.

Set to 11 if ITEM_KEY is ORIG_SYS_REF.

Set to 22 if ITEM_KEY is PS_NODE_ID.

Table 13–2 (Cont.) Price Multiple Items MLS Procedure Parameters

Parameter In/Out Type Required Note

Runtime Oracle Configurator Pricing Architecture

Pricing and ATP in Oracle Configurator 13-5

Your pricing package must retrieve the items from this table and call the pricing
engine, then capture all of the results and update the CZ_PRICING_STRUCTURES
table with list and/or selling prices, and any message text. Oracle Configurator
retrieves the prices from the CZ_PRICING_STRUCTURES table during the
configuration session, so that they can be presented in the Oracle Configurator
window. When the Oracle Configurator window exits, OC deletes the pricing records
from the CZ_PRICING_STRUCTURES table.

If your host application must retain the prices for use after the end of the current
configuration session, then your pricing package must store the results in
application-specific tables (or some other location that is insensitive to the Oracle
session). Oracle Configurator does not reference the contents of these
application-specific tables.

13.2.2.2 Examples of the Pricing Callback Interface
Pricing Callback Interfaces must populate the CZ_PRICING_STRUCTURES table

Example 13–1 on page 13-5 shows a possible implementation of the callback interface
for multiple-item pricing procedures.

Example 13–3 on page 13-9 shows how you would specify pricing parameters in your
initialization message.

Example 13–1 Pricing Callback Interface

PACKAGE CZ_PRICE_TEST AUTHID CURRENT_USER AS

PROCEDURE price_multiple_items (p_configurator_session_key IN VARCHAR2,
 p_price_type IN VARCHAR2,

QUANTITY Number Limit of 9 digits.

Item quantity

UOM_CODE Varchar2 Limit of 3 characters.

UOM code

LIST_PRICE Number List price

SELLING_PRICE Number Selling price

MSG_DATA Varchar2 Limit of 2000 characters.

Message text filled in by your host application.

CONFIG_ITEM_ID Number Not Null This corresponds to the CZ_CONFIG_
ITEMS.CONFIG_ITEM_ID.

Note: CZ_PRICING_STRUCTURES.ITEM_KEY is
unable to establish the full hierarchy of a
configuration when there are multiple
instantiations.

PARENT_
CONFIG_ITEM_ID

Number Together with CONFIG_ITEM_ID, this establishes
the full hierarchy of the configuration when there
are multiple instantiations.

1 Value of CZ_PRC_CALLBACK_UTIL.G_ITEM_KEY_BOM_NODE.
2 Value of CZ_PRC_CALLBACK_UTIL.G_ITEM_KEY_PS_NODE.

Table 13–3 (Cont.) CZ_PRICING_STRUCTURES Interface Table

Column Name
Data
Type Null? Description

Runtime Oracle Configurator Pricing Architecture

13-6 Oracle Configurator Implementation Guide

 p_total_price OUT NUMBER);

END;

13.2.3 ATP Callback Interface
The "Get ATP Dates" procedure returns availability dates for all PTO Models but only
returns the date for the ATO top level Model. Table 13–4 describes the parameters for
the Get ATP Dates procedure.

The parameters of the interface are passed by positional notation, so you can name the
parameters as wanted, as long as you retain the positionality specified in Table 13–4.

13.2.3.1 Use of the Database with the ATP Callback Interface
When you specify the Get ATP Dates procedure, Oracle Configurator stores the list of
items to obtain ATP dates for in the database table CZ_ATP_REQUESTS. For details on
Oracle Configurator tables, see the CZ eTRM on Metalink, Oracle’s technical support
Web site.

If you are using the Oracle ATP pricing mechanism, then your ATP package must
retrieve the items from the table and call the call_atp() procedure defined in your
ATP package, then capture all of the results and update the CZ_ATP_REQUESTS table
with ATP dates.

Oracle Configurator retrieves the ATP dates from the CZ_ATP_REQUESTS table
during the configuration session, so that they can be presented in the Oracle
Configurator window. When the Oracle Configurator window exits, OC deletes the
ATP dates from the CZ_ATP_REQUESTS table.

If your host application must retain the ATP dates for use after the end of the current
configuration session, then your ATP package must store the results in
application-specific tables (or some other location that is insensitive to the Oracle
session). Oracle Configurator does not reference the contents of these
application-specific tables.

Table 13–4 ATP Procedure Parameters

Parameter In/Out Type Required Note

configurator_session_
key

In Varchar2 Required Limit of 50 characters

warehouse_id In Number Required

ship_to_org_id In Number Conditionally
Required You must provide either

ship_to_org_id (by itself),
or both customer_id and
customer_site_id.

customer_id In Number Conditionally
Required

customer_site_id In Number Conditionally
Required

requested_date In Date n/a If a date is not provided, then
the date defaults to the
SYSDATE.

ship_to_group_date Out Date
nocopy

n/a

Integration of Pricing and ATP with Oracle Configurator

Pricing and ATP in Oracle Configurator 13-7

13.2.3.2 Examples of the ATP Callback Interface
Example 13–2 on page 13-7 shows an implementation of the callback interface for ATP
procedures.

Example 13–3 on page 13-9 shows how you would specify ATP parameters in your
initialization message.

Example E–2, "Example of Callback ATP Procedure" on page E-2 provides an example
in context.

Example 13–2 ATP Callback Interface

PACKAGE cz_atp_callback AS

 PROCEDURE call_atp (p_config_session_key IN VARCHAR2,
 p_warehouse_id IN NUMBER,
 p_ship_to_org_id IN NUMBER,
 p_customer_id IN NUMBER,
 p_customer_site_id IN NUMBER,
 p_requested_date IN DATE,
 p_ship_to_group_date OUT NOCOPY DATE);

END cz_atp_callback;

13.3 Runtime Pricing Behavior
It is important to understand some aspects of pricing behavior in the runtime Oracle
Configurator, as they can affect both performance and the responsibilities of the host
application.

■ The runtime Oracle Configurator caches list prices of the items until it is
terminated. The runtime Oracle Configurator assumes that the list price of any
item does not depend on which other items are selected and remains unchanged
during the configuration session.

■ The runtime Oracle Configurator’s performance depends critically on the
performance of the pricing interface package that you provide. List prices in
particular must be returned very quickly, because they are demanded for every
option that is displayed.

■ The runtime Oracle Configurator does not save computed prices. If, after the
configuration session ends, the host application requires access to prices that were
computed during the session, it is up to the host application’s interface package to
save the computed prices. Prices should be saved together with enough
information to allow them to be correlated with the components of the saved
configuration.

■ If the runtime Oracle Configurator is initialized with a previously saved
configuration, it is up to the host application to either return the saved list and
selling prices or to call the pricing engine to get the current price. Direct or manual
editing of prices, adjustments, discounts, and so on is the responsibility of the host
application.

13.4 Integration of Pricing and ATP with Oracle Configurator
Integrating the Oracle Configurator window with your pricing or ATP implementation
consists primarily of causing your host application (for example, through the coding of
the Configure button) to post the XML initialization message to the OC Servlet,
passing as initialization parameters the names of your packages and procedures.

Integration of Pricing and ATP with Oracle Configurator

13-8 Oracle Configurator Implementation Guide

To use the OC pricing and ATP interfaces, you must:

1. Install the OC interface packages in your database, by installing Oracle
Configurator with Oracle Rapid Install. See Section 13.4.1, "Database
Compatibility" on page 13-8.

2. Write your own PL/SQL pricing or ATP procedures, using the OC interfaces. See
Section E.1, "Pricing and ATP Callback Procedures" on page E-1 for examples.

3. Install your packages containing your procedures into the Oracle Applications
database.

You can interface to the Oracle QP pricing engine from your own procedures.

4. In the initialization message that your host application passes to the OC Servlet,
provide parameters that specify the name of the pricing package, the name of the
ATP package, the procedure to use, and the type of pricing to perform.

See Section 13.4.2, "Initialization Parameters" on page 13-9 for an example. See
Section 9.3.6, "Pricing Parameters" on page 9-11 and Section 9.3.7, "ATP
Parameters" on page 9-11 for explanation of the parameters.

5. The display and updating of pricing are controlled by the values of CZ_UI_
DEFS.PRICE_DISPLAY and CZ_UI_DEFS.PRICE_UPDATE. If these fields are null,
then the information is not displayed. The Pricing Package and ATP Package
Parameters are entered in the Test Setup/Preferences page. See Table 13–5 for
details.

13.4.1 Database Compatibility
Oracle Configurator works with Oracle Applications Release 11i. To determine the
database version supported by Oracle Applications, refer to the Certify and
Availability tab on Metalink, Oracle’s technical support Web site.

To obtain pricing data from an Oracle Enterprise Edition database, as used with Oracle
Applications 10.7, 11.0, you must run a concurrent program. See the Populate and
Refresh Configuration Models Concurrent Programs on page C-11.

There are several likely scenarios for pricing and ATP integration. These are described
in the following table:

Table 13–5 Parameters for displaying pricing information

Table.column Value

CZ_UI_DEFS.PRICE_DISPLAY 0 - no price is displayed

1 - list price is displayed

2 - selling price is displayed

3 - list and selling prices are displayed

CZ_UI_DEFS.PRICE_UPDATE 0 - always update

1 - update only on demand

2 - update when the page is loaded

Integration of Pricing and ATP with Oracle Configurator

Pricing and ATP in Oracle Configurator 13-9

You can use the callback interface in all these scenarios.

13.4.2 Initialization Parameters
Example 13–3 is a test page that shows how you would specify pricing and ATP
parameters in your initialization message. The names of the pricing and ATP
parameters are typographically emphasized. This example shows parameters for use
with Oracle Applications Release 11i. See Section 9.3.6, "Pricing Parameters" on
page 9-11 and Section 9.3.7, "ATP Parameters" on page 9-11.

Example 13–3 Initialization Message Using 11i Pricing and ATP Parameters

<html>
<head>
<title>Pricing Test</title>
</head>
<script language="javascript" >
function init() {document.test1.submit();}
</script>
<body onload="init();">
<form action="http://www.mysite.com:8802/OA_HTML/CZInitialize.jsp" method="post"
id="test1" name="test1"><input type="hidden" name="XMLmsg" value='<initialize>
<param name="database_id">serv02_sid01</param>
<param name="user">operations</param>
<param name="pwd">welcome</param>
<param name="calling_application_id">708</param>
<param name="responsibility_id">22713</param>
<param name="ui_type">JRAD</param>
<param name="ui_def_id">3080</param>
<param name="pricing_package_name">cz_price_test</param>
<param name="price_mult_items_proc">price_multiple_items</param>
<param name="configurator_session_key">1234</param>
<param name="atp_package_name">cz_atp_callback_stub</param>
<param name="get_atp_dates_proc">call_atp</param>
<param name="warehouse_id">207</param>
<param name="customer_id">1000</param>
<param name="customer_site_id">1567</param>
</initialize>'>
</form>

Loading ...
</body>
</html>

To obtain the final prices calculated by your pricing package and ATP package, you
need to specify a value of full for the initialization parameter terminate_msg_

To Integrate with... You would...

Oracle Applications
Release 11i database

You write your own callback procedures (which can
call the QP Advanced Pricing engine).

To import BOM Model data to the CZ schema tables,
you run concurrent programs in the Oracle Bills Of
Material application. To export orders to Order
Management (Oracle Applications Release 11i), you
use existing or new programming in your host
application.

Third-party database For both import and export of pricing data, you
must write custom programs.

Controlling Pricing and ATP in a Runtime Oracle Configurator

13-10 Oracle Configurator Implementation Guide

behavior. When your configuration session terminates normally, Oracle Configurator
returns the final prices in the termination message. Your host application can then save
the prices as needed.

13.5 Controlling Pricing and ATP in a Runtime Oracle Configurator
This section describes how to display prices and Available to Promise (ATP)
information in a runtime Oracle Configurator.

Following is an overview of the process:

1. To display list prices, selling prices, and ATP information at runtime, define the
OC Servlet property cz.activemodel.

For details, see the Oracle Configurator Installation Guide.

2. In Oracle Configurator Developer, select pricing and ATP settings for the
generated User Interface.

For details, see Section 13.5.1, "Displaying Prices and ATP Information" on
page 13-10.

3. If you are deploying a custom application, set the appropriate parameters in the
initialization message that is posted to the OC Servlet.

For details about the initialization and termination messages for pricing and ATP,
see Chapter 9, "Session Initialization" and Chapter 10, "Session Termination".

For details about the pricing interface package, see Section 13.2.2, "Pricing
Callback Interface" on page 13-3.

13.5.1 Displaying Prices and ATP Information
If you have defined the OC Servlet property cz.activemodel, you can control
which types of prices are displayed and how they are updated in a generated User
Interface. To do this, edit the UI Definition in Oracle Configurator Developer and
modify the Price and Availability Display settings.

For example, cz.activemodel is set to /lp|atp (display list prices and ATP data).
You can prevent list prices and ATP data from appearing at runtime by deselecting the
List Prices and Availability settings in the UI Definition.

For details about the pricing and ATP settings, and how to modify the UI Definition,
see the Oracle Configurator Developer User’s Guide.

13.5.2 Updating Prices
If pricing is enabled and the UI Definition’s pricing settings are set to display prices in
at runtime, the Recalculate Prices setting controls what action causes selling prices to
be updated. You can set this to

■ On Request

■ On Page Load

■ On Change

For details about these settings, see the Oracle Configurator Developer User’s Guide.

13.5.3 Examples of Controlling Pricing
This section lists how the various settings that control pricing can be used together.

Controlling Pricing and ATP in a Runtime Oracle Configurator

Pricing and ATP in Oracle Configurator 13-11

13.5.3.1 Example: List Prices Only
Table 13–6 lists recommended settings if you want to display only list prices at
runtime.

13.5.3.2 Example: Selling Prices Only
Table 13–7 lists recommended settings if you want to display only selling prices.

Table 13–6 List Price Property Settings

Property or Setting Value

cz.activemodel /lp|/nodp|

Price Display Style List Price

Price Update On Request

Table 13–7 Selling Price Property Settings

Property or Setting Value

cz.activemodel /nolp|/dp|

Price Display Style Selling Price

Price Update On Request

Controlling Pricing and ATP in a Runtime Oracle Configurator

13-12 Oracle Configurator Implementation Guide

Multiple Language Support 14-1

14
Multiple Language Support

This chapter describes the impact of Multiple Language Support (MLS). It includes:

■ Data Import

■ Installed Languages in Multiple Server Environments

■ Deploying a User Interface that Supports MLS

■ Translating Data in CZ_LOCALIZED_TEXTS

■ Translating XML Documents

For general information about creating a configuration model and User Interface that
can be deployed in multiple languages, see the Oracle Configurator Developer User’s
Guide.

For additional information about MLS, refer to the following sources:

■ Oracle Applications Concepts: This document contains general information about
language support in Oracle Applications.

■ Installing Oracle Applications: The chapter on setting up National Language
Support contains a list of languages supported by all Oracle Applications
products.

14.1 Introduction
All predefined Configurator Developer messages are stored in the following tables:

■ FND_NEW_MESSAGES

■ FND_LOOKUPS

■ CZ_LOOKUP_VALUES_VL

Oracle translates all messages in this table into each installed language.

All text that a Configurator Developer user enters that appears in a generated UI is
stored in the CZ_LOCALIZED_TEXTS table in the user’s base language. For a list of
all Configurator Developer text that is stored in this table, see the Oracle Configurator
Developer User’s Guide. If you are deploying a configuration model and UI in other
languages, then the data in this table must be translated.

Translating text into different languages is typically accomplished by:

■ Extracting the database file (text) into a legible and editable format by spooling the
output of a query from SQL*Plus

■ Sending the file to a third-party company that edits the file and translates the data

Data Import

14-2 Oracle Configurator Implementation Guide

■ Re-uploading the file to the database using SQLLoader

This process is described in Section 14.5, "Translating Data in CZ_LOCALIZED_
TEXTS" on page 14-3.

14.2 Data Import
Before importing a BOM Model, be sure that all Items defined in Oracle Inventory
contain descriptions. All translated Item descriptions are stored in the MTL_SYSTEM_
ITEMS_TL table.

The Populate Configuration Models concurrent program:

■ Extracts all strings associated with BOM Models imported from MTL_SYSTEM_
ITEMS_TL for all languages installed on the import target database

■ Populates CZ_LOCALIZED_TEXTS with MTL_SYSTEM_ITEMS_
TL.DESCRIPTION

14.2.1 New Models
When importing a new BOM Model, the Oracle Configurator import procedures
import all translated descriptions of each BOM Model item.

14.2.2 Existing Models
When refreshing an existing imported BOM Model, the import procedures update the
CZ_LOCALIZED_TEXTS table if translations were added or modified in Oracle
Inventory.

For more information, see Section 5.2.10, "Refreshing Imported Data" on page 5-12.

14.3 Installed Languages in Multiple Server Environments
If you are publishing in a two-server environment (such as a development and a
production database), then the base language and the set of installed languages on
both Oracle Applications servers must be exactly the same. If either the base language
or the set of installed languages are not the same, then the concurrent program fails
when copying the publication to the target database. This prevents any missing or
superfluous data in the target database, which can cause errors at runtime.

For more information, see Chapter 3, "Database Instances".

14.4 Deploying a User Interface that Supports MLS
Like Configurator Developer, all Oracle Applications products that can host an Oracle
Configurator use the Languages setting to control the session language. (The
Languages setting is described in the Oracle Configurator Developer User’s Guide.) When
a host application launches Oracle Configurator to configure an item, the language
specified in the database ICX session ticket is passed to Oracle Configurator. Oracle
Configurator uses this information to determine which translated text to retrieve from
the database and display in the UI.

Note: When a new language is added in Oracle Applications and
you want to see the user interface labels in the new language, you
must re-publish the Models.

Translating Data in CZ_LOCALIZED_TEXTS

Multiple Language Support 14-3

For more information about deploying a UI, see Chapter 19, "User Interface
Deployment".

14.5 Translating Data in CZ_LOCALIZED_TEXTS
Following is an example of how you can extract and translate data in CZ_
LOCALIZED_TEXTS.

1. Extract data from CZ_LOCALIZED_TEXTS using SQL*Plus.

For example:

SQL> set linesize 2000
set heading off
spool <file>
select
to_char (intl_text_id) ||
',"' ||
 to_char (model_id) || ',' ||
 to_char (ui_def_id) || ',' ||
 language || '","' ||
 source_lang || '","' ||
 replace (localized_str, '"', '""') || '"'
 from
 cz_localized_texts
 where
 language = 'US' and
 deleted_flag = '0' and
 (
 model_id in (4687, 8546, 11574) or
 ui_def_id in (68487, 56468, 8375)
)
 ;
 spool off

2. Edit the file and translate the text. (This is typically performed by a third party that
specializes in translating data.)

For example:

SQL> 78546,4687,68487,"US","US","Here ""Harry"" is a dog"
92115,4687,68487,"FR","FR","Ici <<Henri>> est chien"

Note that all string data is in quotation marks. Quotation marks within the
translatable strings are doubled but they may need to be altered to fit quotation
conventions in the target language. The LANGUAGE and SOURCE_LANG values
should be changed to the target language of the translation.

3. Delete the existing records.

For example:

SQL> delete from cz_localized_texts
 where

Note: The query in this example extracts only the 'US' records
(language = 'US'). If you need to translate the text into multiple
languages, copy the file for each target language. Alternatively, you
can extract all translations by removing this filter in the query.

Translating XML Documents

14-4 Oracle Configurator Implementation Guide

 (
model_id in (4687, 8546, 11574) or
 ui_def_id in (68487, 56468, 8375)
)

In this example, the script does not contain the filters "deleted_flag = '0' and
language = 'US' " because it removes the deleted records and replaces them with
the new translations.

4. Load the data using SQLLoader.

For example:

SQL> sqlldr userid=apps@CUSTDB
 control=loadtexts.ctl
 log=loadtexts.log

Below is an example of an SQLLoader control file:

LOAD DATA
 INFILE 'customer_texts.dat'
 BADFILE 'customer_texts.bad'
APPEND
 INTO TABLE CZ.CZ_LOCALIZED_TEXTS
 FIELDS TERMINATED BY ","
 OPTIONALLY ENCLOSED BY '"'
 (INTL_TEXT_ID, MODEL_ID,
 UI_DEF_ID, LANGUAGE,
 SOURCE_LANG, LOCALIZED_STR)

5. Translate XML documents as necessary.

See Section 14.6, "Translating XML Documents" on page 14-4.

14.6 Translating XML Documents
After you translate all text in CZ_LOCALIZED_TEXTS and unit test your UI, it is
possible that some text in your UI pages (XML documents) will still require
translation. Some examples include the text of a Static Styled Text UI element and
column header text for elements that represent the columns of a table. (For details
about these UI elements, see the Oracle Configurator Developer User’s Guide.)

The Oracle Applications Extension Translation toolset deals with translatable
information contained in OA Extension pages using XLIFF, a widely used XML format
for transferring and manipulating translatable resources. You can use this toolset to
translate the XML documents that make up your generated UI.

For details, refer to the following documents, which are available on Metalink:

■ OA Framework Personalization and Extensibility Guide

■ Oracle Applications Framework Developer's Guide

■ Oracle Applications Framework Release 11i Documentation Road Map (Metalink
Note # 275880.1)

Part IV
Configuration Model

Part IV presents information that enables you to extend a BOM Model’s structure,
rules, and UI to reflect your business requirements and integrate with a host
application as described in Section 1.4, "Model Development Tasks" on page 1-4. Part
IV contains the following chapters:

■ Chapter 15, "Controlling the Development Environment"

■ Chapter 16, "Publishing Configuration Models"

■ Chapter 17, "Programmatic Tools for Development"

■ Chapter 18, "Programmatic Tools for Maintenance"

Controlling the Development Environment 15-1

15
Controlling the Development Environment

This chapter presents the following topics:

■ Setting up Oracle Configurator Developer

■ Setting up Access to Configurator Developer

■ Oracle Configurator Developer

15.1 Setting up Oracle Configurator Developer
To utilize some Oracle Configurator Developer functionality or access a runtime
Oracle Configurator from other Oracle Applications such as Order Management, you
must set some profile options. See the Oracle Configurator Installation Guide for
information about Oracle Configurator Developer profile options.

Multiple Language Support (MLS) enables you to create a Model and one or more user
interfaces in your base language and then display the runtime UI in any language in
which you do business. For more information on MLS see the Oracle Configurator
Developer User’s Guide and Chapter 14, "Multiple Language Support".

For background on the relationship of Oracle Configurator Developer to the Oracle
Configurator architecture, see Chapter 2, "Configurator Architecture".

15.2 Setting up Access to Configurator Developer
Some setup is required to provide access to Configurator Developer. This section
provides an overview of the process.

Access to specific Configurator Developer functions, such as creating Model structure,
defining rules, and generating a User Interface, is controlled by the responsibility to
which each Oracle Applications user is assigned. For example, a responsibility may
enable user CTHOMAS to generate UIs, but not allow that user to define or modify
rules.

For more information about Oracle Applications responsibilities and function security,
see the Oracle Applications System Administrator’s Guide.

To set up access to Oracle Configurator Developer, your System Administrator must:

1. Define Oracle Configurator Developer users in Oracle Applications.

For details, see the Oracle Applications System Administrator’s Guide.

2. Assign at least one of the predefined Configurator Developer responsibilities listed
in Table 15–1 on page 15-2 to each Oracle Configurator Developer user.

Oracle Configurator Developer

15-2 Oracle Configurator Implementation Guide

15.3 Oracle Configurator Developer
Oracle Configurator Developer provides an intuitive and powerful environment for
the creation and maintenance of configuration models.

15.3.1 Model Development
Using Oracle Configurator Developer that is connected by a LAN, WAN or a WTS to
the database server, the developer makes modifications to a Model (structure, rules, UI
definitions). These modifications of the model data are committed to the Oracle
Applications database server. This is shown as the Model development environment in
Figure 15–1, "Developer Environment".

After making modifications to the Model, the Model can be tested in either the
runtime Oracle Configurator or the Model Debugger. For more information see the
Oracle Configurator Developer User’s Guide.

The OC Servlet commits unit-testing configuration data to the database, after the
developer closes the Configurator window. This is shown as the Unit test scenario in
Figure 15–1, "Developer Environment".

Table 15–1 The Predefined Configurator Developer Responsibilities

Responsibility Description

Oracle Configurator
Administrator

Can create, edit, and delete the same objects as the Configurator
Developer responsibility (see below).

Can create, import, refresh, publish, synchronize, and populate
Models.

Has access to all Oracle Configurator-related concurrent
programs. For more information on concurrent programs, see
Section C.1, "Configurator Administration Concurrent Programs"
for more information.

Oracle Configurator
Developer

Unrestricted read-only access to all objects (including Model
structure, rules, User Interfaces, UI Templates, and so on).

Can create, edit, and delete the following: Folders, Model
structure; rules and rule folders; Properties; Items and Item
Types; Usages; Effectivity Sets; UI Templates; User Interfaces.

Can create, import, refresh, publish, and populate Models.

Has access to some Oracle Configurator-related concurrent
programs. For more information on concurrent programs, see
Section C, "Concurrent Programs".

Oracle Configurator Viewer Unrestricted read-only access to all objects (including Model
structure, rules, User Interfaces, UI Templates, and so on).

Cannot modify any objects.

Warning: Oracle strongly recommends that you do not modify the
predefined Oracle Configurator Developer responsibilities. If you
need to provide access to a different combination of menus and
functions, then define new responsibilities in Oracle Applications.
For information about defining responsibilities, see the Oracle
Applications System Administrator’s Guide.

Oracle Configurator Developer

Controlling the Development Environment 15-3

Figure 15–1 Developer Environment

15.3.2 Runtime Testing
All Oracle Configurator runtime database commits are through OC Servlet. When the
end user closed the Configurator window, the resulting configuration data is saved
directly to the database.

To test the configuration model, there are certain objects that must be in place:

■ In order for Functional Companions to run, you must have access to Java classes.
For more information, see the Oracle Configurator Developer User’s Guide.

■ OC Servlet must be restarted if you add or modify the Java class for a
Configurator Extension.

■ Open a new configuration session in a new browser window by going to the
Model’s Utility page to view any Model, rules, or UI changes.

■ Check that the OC Servlet is running and what version of the runtime Oracle
Configurator software is being used. Enter the following URL in a browser using
the specific local settings for host and port where the OC Servlet is installed:

http://host:port/configurator/oracle.apps.cz.servlet.UiServlet?test=version

Oracle Configurator Developer

15-4 Oracle Configurator Implementation Guide

Publishing Configuration Models 16-1

16
Publishing Configuration Models

This chapter presents information about:

■ Planning Publications

■ How Host Applications Select a Published Model

■ Defining a Publication

■ Publishing a Configuration Model

■ Maintaining Publications

16.1 Planning Publications
Publishing is a process that creates a copy of a configuration model on a specific
database and makes it available to host applications for testing or production use. The
copied data is called a publication, and it includes the Model’s structure, rules, User
Interface, and Global User Interface Templates. The publishing process is explained in
the Oracle Configurator Developer User’s Guide.

Publishing configuration models requires careful planning, based on a thorough
understanding of the process by which publications of configuration models are
defined and made available to host applications.

As part of your planning, consider the following:

■ How will each publication be used?

■ Which host application(s) need to access the publication?

■ How will the configuration model be presented to the end user?

■ How can the Oracle Configurator publication functionality help you achieve your
deployment?

■ Are you working with BOM Models or non-BOM Configurator Developer
Models?

Once you have determined how the publication functionality applies to your situation,
identify the necessary tasks in Oracle Applications and Oracle Configurator
Developer.

Creating configuration models and publication requests is explained in the Oracle
Configurator Developer User’s Guide.

How Host Applications Select a Published Model

16-2 Oracle Configurator Implementation Guide

16.1.1 Designing A Project
Your project design should account for how you use host applications, Usages,
effective date ranges, languages, publication modes, and database instances.

Consider the following:

■ How many databases are you going to set up?

For example, are you going to develop, test, and go live on only one database, or
do you plan to develop test configuration models, but run your production
environment on a separate, production database?

■ Are you going to use Usages to control a publication’s availability?

See Section 16.2.1, "Example: How a Usage Affects Model Structure, Rules, and
Model Publications at Runtime" on page 16-3.

■ Are you going to use effective dates, Effectivity Sets, and Usages within
configuration models to limit the availability of specific Model structure nodes or
rules?

For more information, see the chapter on effectivity in the Oracle Configurator
Developer User’s Guide.

■ What host applications will access your publications?

For a list of host applications that support Oracle Configurator, see the latest
About Oracle Configurator documentation on Metalink.

■ Is your host application registered in Oracle Applications?

For information about registering applications, see the Oracle Applications System
Administrator’s Guide.

■ Will you use the publication Mode to restrict access to testers and end users?

For example, when testing on the production database before going live, setting
the publication mode to Test excludes end users from accessing a publication, even
though the publication still exists in the production database.

16.1.2 Preventing Publication Access Errors
To prevent end users from receiving errors, you should plan for and try to create
publications for all circumstances in which host applications access your configuration
models. Applications that can host a runtime Oracle Configurator can access different
publications for a single configuration model. A publication corresponds to only one
configuration model and one User Interface. A configuration model can have multiple
User Interfaces and you can create many publications for the same Model.

16.2 How Host Applications Select a Published Model
All applications that can host a runtime Oracle Configurator select a specific Model
publication to view by sending an initialization message to the Oracle Configurator
Servlet. If a publication’s applicability parameters match the parameters in this
message, then the corresponding configuration model and UI appear in the
Configurator window. If no matching publication is found but the Model was created
from an imported BOM Model, then Oracle Configurator displays the BOM Model in
the Generic Configurator UI. If no matching publication is found and the Model was
created in Oracle Configurator, then Oracle Configurator displays an error.

How Host Applications Select a Published Model

Publishing Configuration Models 16-3

For example, in your business you know that two different host applications, Oracle
Order Management (OM) and Oracle iStore, will be used to configure Model M1. You
define two unique UIs in Configurator Developer and create two publications for this
Model. You set the Applications applicability parameter to Oracle Order Management
for the first publication, and Oracle iStore for the second. An Oracle Applications user
whose responsibility is assigned to Oracle Order Management selects Model M1 in the
Sales Orders window, and clicks Configure.

Using the information in the initialization message, the OC Servlet selects the only
publication in the database that:

■ Has the Applications parameter set to Oracle Order Management

■ Matches all of the other parameters specified in the initialization message

The OC Servlet then displays the configuration model and UI that you defined
specifically for orders placed from Order Management in the Configurator window.

For detailed information about the initialization message, see Chapter 9, "Session
Initialization".

For information about entering applicability parameters when creating a publication,
see the Oracle Configurator Developer User’s Guide.

16.2.1 Example: How a Usage Affects Model Structure, Rules, and Model Publications
at Runtime

Your company makes and sells cars and has two types of Oracle Order Management
users: experienced users, who are very familiar with each vehicle, and new users, who
are either still in training or have worked for the company for only a short time.

The US Environmental Protection Agency (EPA) requires that cars sold in California
meet more rigorous emissions standards than other states in the U.S. Therefore, cars
that are sold in California must have different engine and exhaust components than
cars sold elsewhere. Your experienced users need to be able to quickly configure
orders and do not require much information except the state in which the customer
lives. However, your less experienced users require more detailed information and
guidance to consistently create valid, orderable configurations.

When defining the configuration model, you create additional Model structure, rules,
and a UI to guide inexperienced users. The additional Model structure and rules
provide the guided buying and selling questions to ensure that inexperienced users
correctly configure each vehicle based on the state in which the customer lives. You
then create a Usage called "Experienced User" and select this Usage for the guided
buying or selling structure and rules in your Model.

Your System Administrator sets the profile option CZ: Publication Usage at the User
level for each Oracle Configurator end user. For the experienced users, the System
Administrator sets this profile option to "Experienced User". For inexperienced users,
the System Administrator accepts the profile option’s default value, which is "Any
Usage."

You create two publications for the Model. One publication is intended for
experienced users, so you select the appropriate UI and the Experienced User Usage
when defining the publication’s applicability parameters. The other publication is
intended for inexperienced users, so you select the UI that has additional controls and
information for configuring the car, but do not select a Usage (that is, you accept the
default value, which is Any Usage).

Defining a Publication

16-4 Oracle Configurator Implementation Guide

When an end user wants to configure a car, Oracle Order Management checks how the
CZ: Publication Usage profile option is set for that user, and adds this value to the
initialization message. If the Usage specified is "Any Usage," then Oracle Configurator
displays the publication and UI intended for the inexperienced user. This publication
has additional UI controls, rules, and guided buying or selling questions to guide the
user’s selections.

If the Usage specified is "Experienced User," then Oracle Configurator displays the
publication and UI intended for the experienced user. This publication has fewer rules
and a very basic UI that enables the end user to select options and create a valid
configuration very quickly.

16.3 Defining a Publication
This section explains:

■ Source and Remote Publications

■ Tables Used in Publishing

■ Publication Details

■ Publication Applicability Parameters

16.3.1 Source and Remote Publications
Defining a publication in Oracle Configurator Developer creates a source publication
with a unique publication ID in the CZ_MODEL_PUBLICATIONS table in the
development database instance. When the publication and Model data is exported to
the target database instance (by running a publication concurrent program in Oracle
Applications), a record of the publication is created on the target database: this is
called a remote publication. Each value in a source publication record corresponds to
a value in the remote publication record. For details on creating a publication in Oracle
Configurator Developer see Appendix C.3, "Configuration Model Publication
Concurrent Programs" on page C-9.

When you define a publication record, Oracle Configurator Developer checks the
source publication’s attributes and applicability parameters to be sure they do not
overlap with other source publications. If a target’s source publication’s database
changes, than an appropriate message is returned when publishing the Model.

16.3.2 Tables Used in Publishing
 The following database tables are used during the publishing process:

■ CZ_EXT_APPLICATIONS

Warning: Configurator Developer does not compare the source
publication to any remote publications, even if the target database is
the same database on which Configurator Developer is running. In
other words, the publishing process does not prevent users on
multiple development instances from publishing Models to the
same target instance. You can only be sure that you are not creating
publications with overlapping applicability parameters in the same
database if you publish from a single development instance. For
this reason, publish configuration models from only one source
database.

Defining a Publication

Publishing Configuration Models 16-5

■ CZ_MODEL_PUBLICATIONS

■ CZ_MODEL_USAGES

■ CZ_PB_CLIENT_APPS

■ CZ_PB_LANGUAGES

■ CZ_PB_MODEL_EXPORTS

■ CZ_PUBLICATION_USAGES

■ CZ_UI_ACTIONS

■ CZ_UI_DEF

For detailed information about the publishing tables (or any other tables in the CZ
schema), see the CZ eTRM on Metalink, Oracle’s technical support Web site.

16.3.3 Publication Details
Access to a publication is determined in part by a publication’s details and
applicability parameters. When you create a new publication or edit an existing
publication, these details are found in the Publications area of the Repository in
Configurator Developer. A publication’s details define the runtime circumstances and
environment in which the published configuration model (that is, the publication) is
available.

This section contains information about how the publication’s details are used
internally by the runtime Oracle Configurator. The publication details described are:

■ Model

■ Product ID

■ User Interface

■ Target Database Instance

■ Mode

For general information about the publication attributes, including how to specify
them when creating the publication record, see the Oracle Configurator Developer User’s
Guide.

16.3.3.1 Model
The Product ID column in the Publications area of the Workbench corresponds to the
MODEL_KEY field in the CZ_MODEL_PUBLICATIONS table. This MODEL_KEY is
the CZ_DEVL_PROJECTS.DEVL_PROJECT_ID that displays the CZ_DEVL_
PROJECTS.NAME. This is the Model name that appears in the General areas of the
Workbench in Configurator Developer.

16.3.3.2 Product ID
Product ID is a designation relevant when publishing in Oracle Configurator
Developer. There is no corresponding Product node in a configuration model’s
structure.

The Product ID field in the Publications area of the Workbench displays different
information depending on whether the specified Model is an imported BOM Model or
a Oracle Configurator (non-BOM) Model.

If the configuration model is based on an imported BOM Model, the Product ID
consists of the organization ID and Oracle Inventory Item ID, which are derived from

Defining a Publication

16-6 Oracle Configurator Implementation Guide

Oracle Inventory (for example, 101 : 214738). This value is stored as the PRODUCT_
KEY in CZ_MODEL_PUBLICATIONS, CZ_DEVL_PROJECTS, and CZ_IMP_DEVL_
PROJECTS. In this case, the Product ID is read-only.

If the publication is based on a non-BOM Model that does not reference an imported
BOM Model, and the PRODUCT_KEY field in CZ_DEVL_PROJECTS is not null, then
that value is used in the publication record and is read-only. If the value is null, then
the user enters a value.

If the publication is based on a non-BOM Model and does contain a Reference to a
BOM Model, the Product ID consists of the imported BOM Model’s Oracle Inventory
Item ID and Organization ID. In this case, the Product ID is read-only.

The PRODUCT_KEY and the product_id parameter specified by the host application’s
session initialization message are the same. For more information about the session
initialization message, see Chapter 9, "Session Initialization".

16.3.3.3 User Interface
If the configuration model specified by the publication has multiple User Interfaces,
then the list of available User Interfaces on the Publications Repository page comes
from the CZ_UI_DEFS table. The available User Interfaces are determined by the
selected configuration model.

16.3.3.4 Target Database Instance
In the Publications area of the Repository, the list of values for this parameter includes
all databases listed in the CZ_SERVERS table. This parameter indicates the database to
which the publication and Model data are copied.

If a configuration model is published to a remote database instance, then the remote
database instance must be defined and enabled. For more information about defining
and enabling a remote server, see Section C.2, "Server Administration Concurrent
Programs" on page C-5.

16.3.3.5 Mode
Values for this parameter include Test, Production, or Disabled. For information about
the publication_mode parameter in the session initialization message, see Section 9.4
on page 9-13. See the Oracle Configurator Installation Guide for information on the
Oracle Applications profile option CZ: Publication Lookup Mode.

16.3.4 Publication Applicability Parameters
Applicability parameters determine the availability of a publication to host
applications. This section describes how the publication applicability parameters are
used internally by the runtime Oracle Configurator. The applicability parameters are:

■ Applications

■ Languages

Note: If the Model you specified is a non-BOM Model, then the
default Product ID is the name of the root Model node. For imported
BOM Models, this value consists of the BOM Model’s Item ID and
Organization ID (defined in Oracle Inventory). You can change the
Product ID when publishing a non-BOM Model; otherwise, it is
read-only.

Defining a Publication

Publishing Configuration Models 16-7

■ Usages

■ Date Range

For general information about applicability parameters, including how to specify them
when publishing, see the Oracle Configurator Developer User’s Guide. For more
information about how a host application interacts with these parameters to select a
publication, see Section 9.3.3 on page 9-10.

16.3.4.1 Applications
When creating a publication, the entries in the CZ_EXT_APPLICATIONS table appear
in Applications list of values on the Publications page. These entries are host
applications that support Oracle Configurator as well as any application that an Oracle
Configurator Administrator has added to the CZ_EXT_APPLICATIONS table. To
determine whether a host application supports Oracle Configurator, see the About
Oracle Configurator documentation for this release on Metalink, Oracle’s technical
support Web site.

If an application does not appear in the Applications list, then the Oracle Configurator
Administrator must add the application to the CZ_EXT_APPLICATIONS table by
running the Add Application to Publication Applicability List concurrent program.
For more information about the Add Application to Publication Applicability List
concurrent program, see Section C.2.1, "Add Application to Publication Applicability
List" on page C-6. For more information about the CZ_EXT_APPLICATIONS table, see
the CZ eTRM on Metalink, Oracle’s technical support Web site.

When you save a publication, the specified applications and publication ID are stored
in the CZ_PB_CLIENT_APPS table.

16.3.4.2 Languages
The Languages applicability parameter is stored in the LANGUAGE column in CZ_
MODEL_APPLICABILITIES_V. The Language list of values is retrieved from the
FND_LANGUAGES table.

For information about Multiple Language Support (MLS), see Chapter 14, "Multiple
Language Support".

16.3.4.3 Usages
The Usages defined in Oracle Configurator are stored in CZ_MODEL_USAGES, and
are displayed in the list of values when assigning Usages to a publication on the
Model Publication page. The Usages assigned to a publication are stored in CZ_
PUBLICATION_USAGES.

For an example of how Usages are used by a host application at runtime, see
Section 16.2.1 on page 16-3.

For general information about Usages and how to define them in Configurator
Developer, see the Oracle Configurator Developer User’s Guide.

16.3.4.4 Date Range
A publication’s effective dates are stored in the columns APPLICABLE_FROM and
APPLICABLE_UNTIL in the CZ_MODEL_PUBLICATIONS table.

Publishing a Configuration Model

16-8 Oracle Configurator Implementation Guide

16.4 Publishing a Configuration Model
After defining a source publication in Oracle Configurator Developer, the
configuration model data must be copied to the target database by doing one of the
following:

■ Submitting a concurrent program request through Oracle Applications. For more
information, see Appendix C.3, "Configuration Model Publication Concurrent
Programs" on page C-9.

When you submit an Oracle Applications concurrent request to publish Model
data to a target database, the Model, any referenced Models, and any referenced
UI Content Templates must either be unlocked or locked by you. For more
information on locking, see the Oracle Configurator Developer User’s Guide.

■ Using the cz_modeloperations_pub.publish_model API through
SQL*PLUS. For more information, see Chapter 18, "Programmatic Tools for
Maintenance".

■ Running a batch process

This creates the remote publication on the target database. When the publication
completes successfully, the remote publication can be accessed by host applications
such as Oracle Order Management or iStore. The CZ_MODEL_PUBLICATIONS table
stores the high level information about the publication. A new entry is entered into the
CZ_DEVL_PROJECT table. For table details see the CZ eTRM on Metalink, Oracle’s
technical support Web site.

Example 16–1 shows some of the data that is created when a configuration model is
published.

Example 16–1 Data created when a configuration model is published

■ Source publication record:

– PUBLICATION_ID: 5721

– SERVER_ID: 5

– REMOTE_PUBLICATION_ID:5760

– SOURCE_TARGET_FLAG: S

■ Corresponding remote publication record:

– PUBLICATION_ID: 5760

– SERVER_ID: 5

– REMOTE_PUBLICATION_ID:5721

– SOURCE_TARGET_FLAG: T

Figure 16–1 illustrates how the source and target publication records have
corresponding values in the database. This correspondence allows source and target
publications to be matched when updating or synchronizing the publication data.

Publishing a Configuration Model

Publishing Configuration Models 16-9

Figure 16–1 Illustration of a Publication Record Mapping

In the source database instance, the SERVER_ID column in the CZ_SERVERS table
identifies the target’s SERVER_ID. This same column and table on the target database
instance is the target’s SERVER_ID (not the source’s SERVER_ID).

For more information about defining publications, examples of overlapping
publications, and UI Templates, see the Oracle Configurator Developer User’s Guide.

For more information, see Section C.3, "Configuration Model Publication Concurrent
Programs" on page C-9.

16.4.1 Publication Profile Options
If a Usage or publication mode is not specified in the session initialization message,
then the following profile options provide default values for these parameters:

■ CZ: Publication Usage

■ CZ: Publication Lookup Mode

16.4.2 Publishing and Model References
If you are publishing a configuration model that has References to other Models, then
all of the referenced Models are also copied to the target database and are part of the
publication. If a referenced Model itself is not published, then it can only be configured
as part of its parent (the published Model). In other words, an end user can configure
only Models that have been published.

The availability of referenced Models is controlled by the Usages and Date Range
applicability parameters. See the Oracle Configurator Developer User’s Guide for more
information on the Usages and Date Range applicability parameters.

16.4.3 Copying User Interface Data
The runtime Oracle Configurator UI supports the use of UI Templates and generated
User Interfaces. Publishing a configuration model copies the following UI-specific
data:

■ Database records in the following tables that have UI_DEF_ID as part of the
primary key in the target database instance:

■ CZ_UI_ACTIONS

■ CZ_UI_CONT_TYPE_TEMPLS

■ CZ_UI_DEFS

■ CZ_UI_PAGES

■ CZ_UI_PAGE_REFS

■ CZ_UI_PAGE_SETS

Maintaining Publications

16-10 Oracle Configurator Implementation Guide

■ CZ_UI_REFS

■ CZ_UI_TEMPLATES

■ Generated User Interfaces for a given UI_DEF_ID and listed in the following:

■ CZ_UI_CONT_TYPE_TEMPLS

■ CZ_UI_PAGES.jrad_doc

■ CZ_UI_TEMPLATES.jrad_id

All translations are stored in the JRAD repository and are copied to the target
database when the generated UI is copied.

16.4.4 Copying Model Rules
By default, the publishing process copies all configuration model data to the target
database. You can control whether rules defined in Configurator Developer are copied
using the PublishingCopyRules setting in the CZ_DB_SETTINGS table. This setting
does not affect Configurator Extension Rules; all Configurator Extension Rules are
always copied when you publish or republish a configuration model.

For more information about the PublishingCopyRules setting, see Section 4.4.3.20 on
page 4-13.

16.4.5 Checking BOM Model and Configuration Model Similarity
When you are publishing to a remote server, the publication concurrent programs call
the Model synchronization concurrent programs. If there are key discrepancies
between the source BOM Model and the configuration model to be published, such as
the Items on both Models are not the same, then an error message is logged by the
publication concurrent program and the configuration model is not published.

Example 16–2 illustrates an error found in CZ_DB_LOGS file when attempting to
publish a configuration model (publication ID = 28261).

Example 16–2 Publishing Error when Checking BOM Model and Configuration Model

Unable to proceed with publishing because the configuration model 'SOURCE
MODEL1-Pub Synch(204 501069)' does not match the corresponding bill on the target
server. The model has not been published.
 28261 36638
BOM Synchronization, version 115.29, started 2002/12/18/16:27:41, session run ID:
36639
 28261 36638
Maximum quantity does not match for item 'ATO OC6' with parent 'ATO Model4' in
configuration model '
SOURCE MODEL1=>PTO Model2=>ATO Model3=>ATO Model4'
 28261 36638
Process terminated for publication_id: 28261
 28261 36638

For more synchronization information, see Section 7.2.1 on page 7-2.

16.5 Maintaining Publications
Typically, a configuration model may undergo many iterations of testing and updates
before it is made available to customers in a production environment. Publishing gives
you complete control over each step in a configuration model’s lifecycle, enabling you

Maintaining Publications

Publishing Configuration Models 16-11

to maintain and update Models that are under development while making approved
versions available in your production environment.

Figure 16–2 Example of the Publication Process

16.5.1 Publication Status
The operations you can perform on an existing publication depend on its current
status. You can view detailed information about publications, including their status, on
the Model Publication page in Configurator Developer.

Table 16–1 lists each status and the corresponding tasks you can perform.

Configurator Developer updates the status of all publications whenever you navigate
to the Publication Repository page or click the Browser Refresh. The Status column
may change, for example, when one of the publication concurrent programs completes
successfully.

Table 16–1 Publication Status and Valid Operations

Status

New or

New Copy Edit Republish Delete Disabled Edit UI

Complete Y Y Y Y Y N

Pending Y Y N Y Y N

Update Pending Y N N N N N

Processing Y N N N N N

Error Y N N Y N N

Maintaining Publications

16-12 Oracle Configurator Implementation Guide

Following is a description of each publication status:

■ Complete: The Oracle Applications concurrent program successfully copied the
configuration model to the publication target database.

■ Pending: A request to create a new publication has been created in Configurator
Developer. When the Oracle Applications concurrent program successfully copies
the Model data to the publication target database, the pending status changes to
Complete. If an error occurs during the publication concurrent program, then the
publication’s status changes to Error.

■ Pending Update: A request to update the existing publication has been created.
When the Oracle Applications concurrent program successfully copies the Model
data to the publication target database, the Pending Update status changes to
Complete. If an error occurs during the update, then the publication’s status rolls
back to Complete so that the user can republish the Model.

■ Processing: The Oracle Applications concurrent manager is processing a request to
create or update this publication.

■ Error: An error occurred while processing the request to create or update this
publication. An error can occur, for example, when you create a new source
publication but another Configurator Developer user updates the Model before
the Oracle Applications concurrent program is complete.

16.5.2 Editing Publications
When an Oracle Configurator Developer user edits a publication, the changes are
automatically propagated to the remote publication in the CZ_MODEL_
PUBLICATIONS table (in the target database).

Depending on the changes made in Oracle Configurator Developer, editing the
publication may involve adding or deleting records in the CZ_PB_CLIENT_APPS or
CZ_PUBLICATION_USAGES tables, or changing the publication’s mode or valid date
range.

For information on how to edit a publication, see the Oracle Configurator Developer
User’s Guide.

16.5.3 Disabling, Deleting, and Re-enabling Publications
You can make a publication unavailable to host applications by disabling it in the
Publication Repository. When a publication is disabled, it remains listed in the
Publication Repository, its status does not change, but the publication’s Disabled
column notes that the publication has been disabled. When a publication is disabled
you can modify its applicability parameters or re-enable it.

You can also delete a publication. When you delete a publication, it no longer appears
in the Publication Repository page in Oracle Configurator Developer, and it cannot be
recovered. However, the publication record still exists in the CZ schema until the

Note: If you publish a new version of the Model and there are
previous published versions in memory because you are still running
on the same Apache JServ, users could get out of memory errors if the
max heap size can't accommodate all of the published Models in
memory. You can increase max heap size (which could degrade
performance) or bounce Apache to clear the previous publication out
of memory.

Maintaining Publications

Publishing Configuration Models 16-13

Purge Configurator Tables concurrent program is run. For more information on the
Purge Configurator Tables concurrent program, see Section C.1.3, "Purge Configurator
Tables" on page C-3.

See the Oracle Configurator Developer User’s Guide for more information on disabling,
deleting and re-enabling publications.

16.5.4 Republishing
This section describes the database tables that are updated when you republish a
configuration model. For information about how to republish a configuration model in
Configurator Developer, see the Oracle Configurator Developer User’s Guide.

When an Oracle Configurator Developer user republishes a configuration model, the
following occurs:

1. The status of the original publication changes to PUP (Pending Update) in the
Publication Repository, and STATUS is PUP in the CZ_PB_MODEL_EXPORTS
table. The publication status does not change until one of the publication
concurrent programs completes successfully.

2. A new publication record is created in the CZ_MODEL_PUBLICATIONS, CZ_PB_
CLIENT_APPS, and CZ_PUBLICATION_USAGES tables of the publication source
development instance. This publication record has the same applicability
parameters as the original publication.

16.5.5 Determining Publishing Information
Knowing the UI_DEF_ID can be helpful when you want to look up information about
a publication using SQL*Plus. Using the Publication ID from Oracle Configurator
Developer’s Publication Repository in a simple SQL*Plus query returns the UI_DEF_
ID. The UI_DEF_ID can then be used in queries on the CZ_CONFIG_HDRS, CZ_
MODEL_PUBLICATIONS, CZ_UI_DEFS, CZ_UI_NODES, CZ_UI_NODE_PROPS,
CZ_UI_PROPERTIES.

Example 16–3 Query for UI_DEF_ID

select ui_def_id
from cz_model_publications
where publication_id=publication number ;
 UI_DEF_ID
 2760

UI_DEF_ID can also be found in CZ_UI_DEFS, or by calling the PL/SQL function cz_
cf_api.ui_for_item. For more information about this function, see Section 17.3,

Note: If you set the profile option CZ: Populate Decimal Quantity
Flags to Yes and then reimport or refresh your BOM Models, you
must republish existing Model publications to ensure that they use the
new setting. Decimal quantities are explained in Section 5.2.7.6 on
page 5-10.

Note: If a new language has been added to Oracle Applications, then
you must republish your Models in order for the User Interface labels
to be displayed in the new foreign language. For more information on
MLS, see Chapter 14, "Multiple Language Support".

Maintaining Publications

16-14 Oracle Configurator Implementation Guide

"Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages" on
page 17-6.

16.5.6 Retrieving Orders from Previously Published Models
A situation may develop where you want to retrieve prior orders that were placed
against a previously published Model, rather than the more recent Model that has new
structure and new rules. For example, when the first Model was published the From
and To Date Range applicability parameters were not specified.

To retrieve orders for the previously published Model, you must:

1. Edit the first published Model’s Date Range applicability parameter to have an
end date.

2. Republish the Model.

3. Publish the newer Model with the From Date Range applicability parameter equal
to the To Date Range of the first published Model.

See the Oracle Configurator Developer User’s Guide to learn how to perform these tasks.

16.5.7 Synchronizing Publication Data
Publication data must be synchronized whenever you:

■ Clone a publication source or target database instance

■ Migrate data from one database instance to another

For more information, see Chapter 7, "Synchronizing Data".

16.5.8 Example of Maintaining Publications
This section provides an example of how a business may develop configuration
models and maintain publications in a development environment. An organization
has a laptop computer called M1A that is currently in production. However, a new
version of M1A is under development and this computer, M1B, will replace M1A by
the end of the year. The new Model must replace the older version in the production
environment and there can be no period of time when neither is available to
customers.

Figure 16–3 provides an overview of how this organization plans to develop, test, and
release M1B into production.

Note: If a previously published configuration model is modified in
Configurator Developer and is then republished, then end users can
restore any saved configurations that were created using the original
publication. However, if the Model’s structure or rules have changed,
the end user may need to make additional selections to create a valid
and complete configuration.

Maintaining Publications

Publishing Configuration Models 16-15

Figure 16–3 Maintaining Publications

Details
The following steps correspond to the ID column in the project schedule shown in
Figure 16–3.

1. Using Configurator Developer, the development team creates a new configuration
model (M1B) to reflect the new product’s features and enhancements. The Model
is unit tested periodically in Oracle Configurator Developer, but it is not yet made
available for system testing.

2. The new configuration model is complete and ready for system testing.

3. Developers create publication P1 and sets its publication Mode to Test. The
publication is effective immediately and no end date is required because it can be
modified at any time. The Applications and Usages parameters specify which host
applications and end users can access the Model.

4. The quality assurance (QA) group accesses and tests the configuration model for
product M1B and reports any problems to the development group. The host
application that the testers use selects the configuration model to display based on
the applicability parameters defined for publication P1.

5. The first round of testing configuration model M1B is complete.

6. Developers incorporate comments from testers by updating the configuration
model in Configurator Developer. This may include building new Model
structure, creating or modifying rules, or updating the User Interface.

7. When changes to the Model are complete, developers republish the Model.
Republishing copies any new or modified data to the specified database so that the
QA group can begin a second round of testing. Republishing does not change any
of the original applicability parameters, so publication P1 is available to the same
host applications and users as in the first round of testing.

8. The QA group performs a second round of testing Model M1B.

9. The second round of testing is complete and additional comments are reported to
the development group.

10. Developers update the configuration model in Configurator Developer.

Maintaining Publications

16-16 Oracle Configurator Implementation Guide

11. Company management and the development group agree that the configuration
model is ready for production. In this enterprise, the development and production
environments exist on the same database, so a developer makes the product
available to customers by modifying the applicability parameters of the existing
publications as follows:

a. Change the publication Mode P1 from Test to Production

b. Change the To Effectivity Date of the now obsolete publication for Model M1A
to 12:00:00 a.m. on 01/01/01

c. Specify a From Effectivity Date for publication P1 of 12:00:00 a.m. on 01/01/01

This modification ensures that there is no gap in the availability of the old and
new products because M1A becomes obsolete at the same time M1B becomes
available in production.

See the Oracle Configurator Developer User’s Guide for more information.

Programmatic Tools for Development 17-1

17
Programmatic Tools for Development

This chapter describes programmatic tools that you can use primarily to develop a
configuration model and deploy a runtime Oracle Configurator. This includes:

■ Choosing the Right Tool for the Job

■ Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages

For information on tools for maintaining a deployed runtime Oracle Configurator, see
Chapter 18, "Programmatic Tools for Maintenance".

17.1 Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages
The programmatic tools that you use while developing or deploying a runtime Oracle
Configurator are provided in the PL/SQL packages CZ_CF_API and CZ_CONFIG_
API_PUB.

17.1.1 Purpose of the Packages
The CZ_CF_API package contains a set of APIs that enable you to perform various
tasks such as the following:

■ Copying and deleting configurations that are not networked configurations

■ Determining default dates used by the runtime Oracle Configurator

■ Establishing session identity

■ Identifying publications

■ Validating configurations

■ Verifying configurations

The CZ_CONFIG_API_PUB package contains a set of APIs that enable you to copy
configurations including networked configurations and view an existing configuration
in the CZ schema.

17.1.2 Overview of Procedures and Functions
Table 17–1 on page 17-2 summarizes and categorizes the procedures and functions
available in the packages CZ_CF_API and CZ_CONFIG_API_PUB.

These procedures and functions are described in individual detail in Section 17.3,
"Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages" on
page 17-9.

Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages

17-2 Oracle Configurator Implementation Guide

17.1.3 Installation of the Packages
These packages are installed in the Oracle Applications database as part of Oracle
Configurator.

■ If you installed a new instance of Oracle Applications, then these packages were
installed by using Oracle Rapid Install.

Table 17–1 Overview of Procedures and Functions in the Package CZ_CF_API

Category API Name P/F1

1 P = procedure, F = function

Working with Common Bills
See Section 17.2.6.

COMMON_BILL_FOR_ITEM P

Copying and Deleting
Configurations
See Section 17.2.5.

COPY_CONFIGURATION

CZ_CONFIG_API_PUB.COPY_CONFIGURATION

P

COPY_CONFIGURATION_AUTO
CZ_CONFIG_API_PUB.COPY_CONFIGURATION_
AUTO

P

DELETE_CONFIGURATION P

Setting Configuration Dates
See Section 17.2.2.

DEFAULT_NEW_CFG_DATES P

DEFAULT_RESTORED_CFG_DATES P

Establishing Session Identity
See Section 17.2.1.

ICX_SESSION_TICKET F

Identifying Publications
See Section 17.2.7.

CONFIG_MODEL_FOR_ITEM F

CONFIG_MODEL_FOR_PRODUCT F

CONFIG_MODELS_FOR_ITEMS F

CONFIG_MODELS_FOR_PRODUCTS F

CONFIG_UI_FOR_ITEM F

CONFIG_UI_FOR_ITEM_LF F

CONFIG_UI_FOR_PRODUCT F

CONFIG_UIS_FOR_ITEMS F

CONFIG_UIS_FOR_PRODUCTS F

MODEL_FOR_ITEM F

MODEL_FOR_PUBLICATION_ID F

PUBLICATION_FOR_ITEM F

PUBLICATION_FOR_PRODUCT F

PUBLICATION_FOR_SAVED_CONFIG F

UI_FOR_ITEM F

UI_FOR_PUBLICATION_ID F

Validating Configurations
See Section 17.2.3.

VALIDATE P

Verifying Configurations
See Section 17.2.4.

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION P

Choosing the Right Tool for the Job

Programmatic Tools for Development 17-3

■ If you installed Oracle Configurator in an existing instance of Oracle Applications,
then these packages were installed by applying the appropriate Oracle
Configurator patch.

See the Oracle Configurator Installation Guide for details about installing Oracle
Configurator.

17.1.4 References for Working with PL/SQL Procedures and Functions
For background information and details on basic aspects of working with the PL/SQL
procedures and functions in this package, see Table 17–2, " References for Working
with PL/SQL Procedures and Functions", which suggests relevant topics in the Oracle
Documentation Library.

17.2 Choosing the Right Tool for the Job
These procedures and functions are described in detail in Section 17.3.2, "Procedures
and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages" on page 17-7.

17.2.1 Establishing Session Identity
Use the following function to establish the identity of a Oracle Applications database
session:

■ ICX_SESSION_TICKET

17.2.2 Setting Configuration Dates
Use these procedures to determine the dates that would be used for configurations:

■ DEFAULT_NEW_CFG_DATES

■ DEFAULT_RESTORED_CFG_DATES

Table 17–2 References for Working with PL/SQL Procedures and Functions

See this topic ... In this reference document ...

User-defined data types Oracle 9i Database Concepts

Procedures and packages

Using procedures and packages Oracle 9i Application’s Developer's Guide -
Fundamentals

Calling stored procedures

Understanding the Oracle programmatic
environments

Language elements PL/SQL User's Guide and Reference

Packages

Index-by tables

Collections and records

User-defined subtypes

Using SQL*Plus SQL*Plus User's Guide and Reference

UTL_HTTP Oracle9i Supplied PL/SQL Packages Reference

Choosing the Right Tool for the Job

17-4 Oracle Configurator Implementation Guide

17.2.3 Validating Configurations
Use this procedure to validate a configuration:

■ VALIDATE

17.2.4 Verifying Configurations
Use this procedure to verify that the configuration exists and that it is valid and
complete:

■ CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

17.2.5 Copying and Deleting Configurations
Use these procedures to copy and delete configurations:

■ COPY_CONFIGURATION - not to be used with networked configurations

■ COPY_CONFIGURATION_AUTO - not to be used with networked configurations

■ CZ_CONFIG_API_PUB.COPY_CONFIGURATION - used with networked
configurations

■ CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO - used with networked
configurations

■ DELETE_CONFIGURATION

17.2.6 Working with Common Bills
Use this procedure to retrieve a common bill:

■ COMMON_BILL_FOR_ITEM

17.2.7 Identifying Publications
After publishing Models, you can verify whether a publication lookup will succeed for
a given set of applicability parameters. See Section 17.2.7.2 on page 17-5 for details
about specifying applicability parameters.

17.2.7.1 Functions for Identifying Publications
Use these functions to look up publications for a given set of applicability parameters:

■ CONFIG_MODEL_FOR_ITEM

■ CONFIG_MODEL_FOR_PRODUCT

■ CONFIG_MODELS_FOR_ITEMS

■ CONFIG_MODELS_FOR_PRODUCTS

■ CONFIG_UI_FOR_ITEM

■ CONFIG_UI_FOR_ITEM_LF

■ CONFIG_UI_FOR_PRODUCT

■ CONFIG_UIS_FOR_ITEMS

■ CONFIG_UIS_FOR_PRODUCTS

■ MODEL_FOR_ITEM

■ MODEL_FOR_PUBLICATION_ID

Choosing the Right Tool for the Job

Programmatic Tools for Development 17-5

■ PUBLICATION_FOR_ITEM

■ PUBLICATION_FOR_PRODUCT

■ PUBLICATION_FOR_SAVED_CONFIG

■ UI_FOR_ITEM

■ UI_FOR_PUBLICATION_ID

17.2.7.2 Applicability Parameters
Applicability parameters control the availability of a publication in your development
or production environment

You can use applicability parameters in Oracle Configurator Developer (OCD) to
determine which Model and UI to display when you publish a Model. See the Oracle
Configurator Developer User’s Guide for more information about applicability
parameters and publishing.

You can also use applicability parameters in the initialization message that a host
application sends to the Oracle Configurator Servlet. See Chapter 9, "Session
Initialization" for more information.

Table 17–3 on page 17-5 lists the applicability parameters that many of the functions
and procedures in this package use to search for Models, UIs, and publications.

Table 17–3 Applicability Parameters for Publication Searches

Parameter in this
package

Data
type

Parameter in
OCD1 Description

calling_application_id number Applications The registered ID of an application for
which the Model is published. This is a
valid APPLICATION_ID from FND_
APPLICATION.

Example value: 660

config_lookup_date date Date (From,
To)

Provide a date that falls inside the
applicable range for the publication. Use
the standard Oracle TO_DATE function to
format the date.

language varchar2 Languages Language code for an installed language
(such as ’US’). CZ_PB_LANGUAGES is
accessed to identify the publication
assigned to the specified language. The
default is NULL. If the parameter is NULL,
then userenv("LANG") determines the
language.

Example value: 'US'

product_key varchar2 Product ID For imported models, the product_key is
the ORGANIZATION_ID concatenated
with the INVENTORY_ITEM_ID, in MTL_
SYSTEMS_ITEMS.

For Models created in Oracle Configurator
Developer, the Product ID is generated
from the name of the Model when you
publish the Model.

Example value (for an imported Model):
204:2510

Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages

17-6 Oracle Configurator Implementation Guide

17.2.7.3 List Parameters
In order to reduce the number of function calls when an application must find Models
for multiple products or items, some functions in this package take parameters that are
lists of values, and return a list of values (as identified in the syntax for the function).
To pass a list of values, this package defines several custom data types that are
collections.

Parameters in this package that are of one of these list types do not default to NULL.

See Section 17.3.1, "Custom Data Types" on page 17-6 for the definition of these types.

17.3 Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB
Packages

■ This section provides descriptions of each of the procedures and functions in the
CZ_CF_API and CZ_CONFIG_API_PUB packages. These procedures and
functions are listed alphabetically in Table 17–5, " Procedures and Functions in the
Packages CZ_CF_API and CZ_CONFIG_API_PUB" on page 17-7

■ Descriptions of the custom data types defined in the package are provided in
Section 17.3.1, "Custom Data Types" on page 17-6.

■ For a basic example of how to call one of the functions in the CZ_CF_API package,
see Example 17–1, "Using the UI_FOR_PUBLICATION_ID Function" on
page 17-53.

■ See also Section 17.1, "Overview of the CZ_CF_API and CZ_CONFIG_API_PUB
Packages" on page 17-1.

17.3.1 Custom Data Types
Table 17–4, " Custom Data Types in the Package CZ_CF_API" describes the custom
data types that are defined in this package.

■ For background on the record data type, see the references for collections and
records.

■ For background on the table data type, see the references for collections.

■ For background on subtypes, see the references for user-defined subtypes.

publication_mode varchar2 Mode The publication mode for the publication.
Values are ’P’ (production) or ’T’ (test). The
default is NULL. If NULL, then the CZ:
Publication Lookup Mode profile option
value is checked.

Example value: 'T'

usage_name varchar2 Usages Name of a Usage defined in Oracle
Configurator Developer. If this is NULL,
then the CZ: Publication Usage profile
option value is checked.

Example value: 'my usage'
1 These names are for fields in the Model Publication page of Oracle Configurator Developer.

Table 17–3 (Cont.) Applicability Parameters for Publication Searches

Parameter in this
package

Data
type

Parameter in
OCD1 Description

Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages

Programmatic Tools for Development 17-7

■ For background on the UTL_HTTP package, see the references for UTL_HTTP.

For background on these custom data types, see the references under Section 17.1.4,
"References for Working with PL/SQL Procedures and Functions" on page 17-3:

17.3.2 Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB
Packages

This section provides descriptions of each of the procedures and functions in the CZ_
CF_API and CZ_CONFIG_API_PUB packages, arranged alphabetically. These
procedures and functions are listed alphabetically in Table 17–5, " Procedures and
Functions in the Packages CZ_CF_API and CZ_CONFIG_API_PUB".

Table 17–4 Custom Data Types in the Package CZ_CF_API

Custom Type Description

INPUT_SELECTION Record consisting of:

COMPONENT_CODE VARCHAR2(1200)

QUANTITY NUMBER

INPUT_SEQ NUMBER

CONFIG_ITEM_ID DEFAULT NULL

CFG_INPUT_LIST Table of INPUT_SELECTION indexed by BINARY_INTEGER

CFG_OUTPUT_PIECES This is a result of the batch validation message. Subtype of UTL_
HTTP.HTML_PIECES. It is a table of VARCHAR2(2000).

NUMBER_TBL_TYPE Table of NUMBER

DATE_TBL_TYPE Table of DATE

VARCHAR2_TBL_TYPE Table of VARCHAR2(255)

Table 17–5 Procedures and Functions in the Packages CZ_CF_API and CZ_CONFIG_
API_PUB

API Name P/F1

COMMON_BILL_FOR_ITEM on page 17-9 P

CONFIG_MODEL_FOR_ITEM on page 17-10 F

CONFIG_MODEL_FOR_PRODUCT on page 17-14 F

CONFIG_MODELS_FOR_ITEMS on page 17-12 F

CONFIG_MODELS_FOR_PRODUCTS on page 17-16 F

CONFIG_UI_FOR_ITEM on page 17-18 F

CONFIG_UI_FOR_ITEM_LF on page 17-20 F

CONFIG_UI_FOR_PRODUCT on page 17-22 F

CONFIG_UIS_FOR_ITEMS on page 17-24 F

CONFIG_UIS_FOR_PRODUCTS on page 17-26 F

COPY_CONFIGURATION on page 17-28 P

COPY_CONFIGURATION_AUTO on page 17-32 P

CZ_CONFIG_API_PUB.COPY_CONFIGURATION on page 17-30 P

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO on page 17-34 P

DEFAULT_NEW_CFG_DATES on page 17-36 P

Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages

17-8 Oracle Configurator Implementation Guide

DEFAULT_RESTORED_CFG_DATES on page 17-37 P

DELETE_CONFIGURATION on page 17-39 P

ICX_SESSION_TICKET on page 17-41 F

MODEL_FOR_ITEM on page 17-42 F

MODEL_FOR_PUBLICATION_ID on page 17-44 F

PUBLICATION_FOR_ITEM on page 17-45 F

PUBLICATION_FOR_PRODUCT on page 17-47 F

PUBLICATION_FOR_SAVED_CONFIG on page 17-49 F

UI_FOR_ITEM on page 17-51 F

UI_FOR_PUBLICATION_ID on page 17-53 F

VALIDATE on page 17-54 P

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION on page 17-56 P
1 P = procedure, F = function

Table 17–5 (Cont.) Procedures and Functions in the Packages CZ_CF_API and CZ_
CONFIG_API_PUB

API Name P/F1

COMMON_BILL_FOR_ITEM

Programmatic Tools for Development 17-9

COMMON_BILL_FOR_ITEM

Retrieves the common bill item, if any, for the organization ID and inventory item ID
that are passed in as parameters.

This procedure is used by the PUBLICATION_FOR_ITEM function to retrieve the
common bill's details if the Model has not been published.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE common_bill_for_item (in_inventory_item_id IN NUMBER,
 in_organization_id IN NUMBER,
 common_inventory_item_id OUT NOCOPY NUMBER,
 common_organization_id OUT NOCOPY NUMBER);

Table 17–6 on page 17-9 describes the parameters for the COMMON_BILL_FOR_ITEM
procedure.

Table 17–6 Parameters for the COMMON_BILL_FOR_ITEM Procedure

Parameter Data Type Mode Note

in_inventory_item_id number in Inventory Item ID of item for which
common bill may be defined.

in_organization_id number in Organization ID of Item for which
common bill may be defined.

common_inventory_item_id number out Inventory Item ID of the common bill item.
NULL if no common bill defined.

common_organization_id number out Organization ID of the common bill Item.
NULL if no common bill defined.

CONFIG_MODEL_FOR_ITEM

17-10 Oracle Configurator Implementation Guide

CONFIG_MODEL_FOR_ITEM

This function finds a published configuration model for an item, and other
applicability parameters. Returns NULL if the Model cannot be found.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, profile
option values will be checked. However, Oracle Applications session parameters are
not defined by default within a SQL*Plus session. If profile option values are not
defined for this or any other reason, the defaults for usage_name and/or
publication_mode will be "Any Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_model_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–7 on page 17-10 describes the parameters for the CONFIG_MODEL_FOR_
ITEM function.

Table 17–7 Parameters for the CONFIG_MODEL_FOR_ITEM Function

Parameter
Data
Type Mode Note

inventory_item_id number in If the Model was imported from Oracle BOM, this
is the Inventory Item ID for the published Model,
from the MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle BOM, this
is the organization ID for the published Model,
from the MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date in Date to search for inside the applicable range for
the publication.

See Section 17.2.7.2, "Applicability Parameters" on
page 17-5.

CONFIG_MODEL_FOR_ITEM

Programmatic Tools for Development 17-11

Considerations After Running

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

calling_application_id number in The registered ID of an application for which the
Model is published.

See Section 17.2.7.2, "Applicability Parameters" on
page 17-5.

usage_name varchar2 in Usage name to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters" on
page 17-5.

publication_mode varchar2 in Publication mode to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters" on
page 17-5.

language varchar2 in Language code to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters" on
page 17-5.

Table 17–7 (Cont.) Parameters for the CONFIG_MODEL_FOR_ITEM Function

Parameter
Data
Type Mode Note

CONFIG_MODELS_FOR_ITEMS

17-12 Oracle Configurator Implementation Guide

CONFIG_MODELS_FOR_ITEMS

This function finds the Models that are associated with each entry in a list of Inventory
Items that are published with the matching applicability parameters. The function
returns the list of Model IDs (devl_project_id values) that meet the specified
parameters.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_models_for_items (inventory_item_id IN NUMBER_TBL_TYPE,
 organization_id IN NUMBER_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 calling_application_id IN NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

Table 17–8 on page 17-12 describes the parameters for the CONFIG_MODELS_FOR_
ITEMS function.

Table 17–8 Parameters for the CONFIG_MODELS_FOR_ITEMS Function

Parameter Data Type Mode Note

inventory_item_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of Inventory Item IDs
for the published Model from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of organization IDs for
the published Model from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

CONFIG_MODELS_FOR_ITEMS

Programmatic Tools for Development 17-13

Considerations After Running

Results
This function returns an array in which each element is a devl_project_id value
for the associated item. NULL is returned if there is no matching publication.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2_tbl_type in List of publication modes to search for in
the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2_tbl_type in List of language codes to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–8 (Cont.) Parameters for the CONFIG_MODELS_FOR_ITEMS Function

Parameter Data Type Mode Note

CONFIG_MODEL_FOR_PRODUCT

17-14 Oracle Configurator Implementation Guide

CONFIG_MODEL_FOR_PRODUCT

This function finds a published configuration model for a product key and other
applicability parameters. Returns NULL if the Model cannot be found.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_model_for_product (product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–9 on page 17-14 describes the parameters for the CONFIG_MODEL_FOR_
PRODUCT function.

Table 17–9 Parameters for the CONFIG_MODEL_FOR_PRODUCT Function

Parameter Data Type Mode Note

product_key varchar2 in Product key to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

config_lookup_date date in Date to search for inside the applicable range for
the publication.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

calling_application_id number in The registered ID of an application for which the
Model is published.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

CONFIG_MODEL_FOR_PRODUCT

Programmatic Tools for Development 17-15

Considerations After Running

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

usage_name varchar2 in Usage name to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

publication_mode varchar2 in Publication mode to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

language varchar2 in Language code to search for in the publication.

See Section 17.2.7.2, "Applicability Parameters"
on page 17-5.

Table 17–9 (Cont.) Parameters for the CONFIG_MODEL_FOR_PRODUCT Function

Parameter Data Type Mode Note

CONFIG_MODELS_FOR_PRODUCTS

17-16 Oracle Configurator Implementation Guide

CONFIG_MODELS_FOR_PRODUCTS

This function returns a list of Model IDs (devl_project_id values) associated with
each entry in a list of product keys that are published with matching applicability
parameters.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_models_for_products (product_key IN VARCHAR2_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 calling_application_id IN NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

Table 17–10, " Parameters for the CONFIG_MODELS_FOR_PRODUCTS Function" on
page 17-16 describes the parameters for the CONFIG_MODELS_FOR_PRODUCTS
function.

Table 17–10 Parameters for the CONFIG_MODELS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

product_key varchar2_tbl_type in List of product keys to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

CONFIG_MODELS_FOR_PRODUCTS

Programmatic Tools for Development 17-17

Considerations After Running

Results
This function returns a list of Model IDs (devl_project_id values) associated with
each entry in a list of product keys that are published with matching applicability
parameters.

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2_tbl_type in List of publication modes to search for in
the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2_tbl_type in List of language codes to search for in
the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–10 (Cont.) Parameters for the CONFIG_MODELS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

CONFIG_UI_FOR_ITEM

17-18 Oracle Configurator Implementation Guide

CONFIG_UI_FOR_ITEM

This function returns the user interface ID associated with the publication found for
the input item, organization ID, and applicability.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_ui_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–11 on page 17-18 describes the parameters for the CONFIG_UI_FOR_ITEM
function.

Table 17–11 Parameters for the CONFIG_UI_FOR_ITEM Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, this is the Inventory Item ID for
the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, this is the organization ID for the
published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

CONFIG_UI_FOR_ITEM

Programmatic Tools for Development 17-19

Considerations After Running

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the publication
UI type can be either APPLET, DHTML,
or JRAD.

If DHTML or JRAD is passed and there is
no publication available for the item,
then the API returns the user interface ID
of the BOM JRAD UI.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2 in Usage name to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–11 (Cont.) Parameters for the CONFIG_UI_FOR_ITEM Function

Parameter Data Type Mode Note

CONFIG_UI_FOR_ITEM_LF

17-20 Oracle Configurator Implementation Guide

CONFIG_UI_FOR_ITEM_LF

This function does the same work as CONFIG_UI_FOR_ITEM, but also returns the
look_and_feel of the UI (’APPLET’, ’BLAF’, or ’FORMS’).

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_ui_for_item_lf (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 look_and_feel OUT NOCOPY VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–12 on page 17-20 describes the parameters for the CONFIG_UI_FOR_ITEM_
LF function.

Table 17–12 Parameters for the CONFIG_UI_FOR_ITEM_LF Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, this is the Inventory Item ID for
the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, this is the organization ID for the
published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

CONFIG_UI_FOR_ITEM_LF

Programmatic Tools for Development 17-21

Considerations After Running

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the publication
UI type can be either APPLET, DHTML,
or JRAD.

If DHTML or JRAD is passed and there is
no publication available for the item,
then the API returns the user interface ID
of the BOM JRAD UI.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2 in Usage name to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

look_and_feel varchar2 out This is a tag that overrides the default
look and feel for component-style UIs
(when UI_STYLE=0) in the CZ_UI_DEFS
table.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–12 (Cont.) Parameters for the CONFIG_UI_FOR_ITEM_LF Function

Parameter Data Type Mode Note

CONFIG_UI_FOR_PRODUCT

17-22 Oracle Configurator Implementation Guide

CONFIG_UI_FOR_PRODUCT

This function finds UI for a product, returns null if no UI can be found. If ui_type is
passed in, the function will validate the UI it finds against this type. If the types do not
match, no UI will be returned. If no ui_type is passed, the type of the UI will be
returned in ui_type.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_ui_for_product (product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–13, " Parameters for the CONFIG_UI_FOR_PRODUCT Function" describes
the parameters for the CONFIG_UI_FOR_PRODUCT function.

Table 17–13 Parameters for the CONFIG_UI_FOR_PRODUCT Function

Parameter Data Type Mode Note

product_key varchar2 in Product key to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

CONFIG_UI_FOR_PRODUCT

Programmatic Tools for Development 17-23

Considerations After Running

Results
If ui_type is passed in, then the function will validate the UI it finds against this
type. This is the type of published UI sought and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If DHTML or JRAD is passed and the
item does not have a publication available, and if the product_key corresponds to
the inventory item, then the user interface ID of the BOM UI is returned.

If APPLET is passed, then the publication UI type can be either APPLET, DHTML, or
JRAD.

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the publication
UI type can be either APPLET, DHTML,
or JRAD.

If DHTML or JRAD is passed and there is
no publication available for the item, and
if the product_key corresponds to the
inventory item, then the user interface ID
of the BOM UI is returned

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2 in Usage name to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–13 (Cont.) Parameters for the CONFIG_UI_FOR_PRODUCT Function

Parameter Data Type Mode Note

CONFIG_UIS_FOR_ITEMS

17-24 Oracle Configurator Implementation Guide

CONFIG_UIS_FOR_ITEMS

This function returns a list of user interfaces that are associated with each entry in the
list of Inventory Items that are published with matching applicability parameters.

Considerations Before Running

Timing
This function should be used after publishing Models to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_uis_for_items (inventory_item_id IN NUMBER_TBL_TYPE,
 organization_id IN NUMBER_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 ui_type IN OUT NOCOPY VARCHAR2_TBL_TYPE,
 calling_application_id IN NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

Table 17–14, " Parameters for the CONFIG_UIS_FOR_ITEMS Function" describes the
parameters for the CONFIG_UIS_FOR_ITEMS function.

Table 17–14 Parameters for the CONFIG_UIS_FOR_ITEMS Function

Parameter Data Type Mode Note

inventory_item_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of Inventory Item IDs
for the published Model from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of organization IDs for
the published Model from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

CONFIG_UIS_FOR_ITEMS

Programmatic Tools for Development 17-25

Considerations After Running

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

ui_type varchar2_tbl_type in/ out This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed,
then the publication UI type must be
either DHTML or JRAD. Otherwise
NULL is returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
then the API returns the user interface
ID of the BOM JRAD UI.

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2_tbl_type in List of publication modes to search for
in the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2_tbl_type in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–14 (Cont.) Parameters for the CONFIG_UIS_FOR_ITEMS Function

Parameter Data Type Mode Note

CONFIG_UIS_FOR_PRODUCTS

17-26 Oracle Configurator Implementation Guide

CONFIG_UIS_FOR_PRODUCTS

This function returns a list of user interfaces that are associated with each entry in the
list of product keys that are published with matching applicability parameters.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION config_uis_for_products (product_key IN VARCHAR2_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 ui_type IN OUT NOCOPY VARCHAR2_TBL_TYPE,
 calling_application_id IN NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

Table 17–15, " Parameters for the CONFIG_UIS_FOR_PRODUCTS Function" describes
the parameters for the CONFIG_UIS_FOR_PRODUCTS function.

Table 17–15 Parameters for the CONFIG_UIS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

product_key varchar2_tbl_type, in List of product keys to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

config_lookup_date date_tbl_type, in List of dates to search for inside the
applicable range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

CONFIG_UIS_FOR_PRODUCTS

Programmatic Tools for Development 17-27

Considerations After Running

Results
If ui_type is passed in, then the function will validate the UI it finds against this
type. This is the type of published UI sought and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If DHTML or JRAD is passed and the
item does not have a publication available, and if the product_key corresponds to
the inventory item, then the user interface ID of the BOM UI is returned.

If APPLET is passed, then the publication UI type can be either APPLET, DHTML, or
JRAD.

ui_type varchar2_tbl_type, in/out This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed,
then the publication UI type must be
either DHTML or JRAD. Otherwise
NULL is returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
and if the product_key corresponds to
the inventory item, then the user
interface ID of the BOM UI is returned

calling_application_id number_tbl_type, in List of registered IDs of applications for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2_tbl_type, in List of Usage names to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2_tbl_type, in List of publication modes to search for
in the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2_tbl_type in List of language codes to search for in
the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–15 (Cont.) Parameters for the CONFIG_UIS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

COPY_CONFIGURATION

17-28 Oracle Configurator Implementation Guide

COPY_CONFIGURATION

This procedure in the CZ_CF_API package is used to copy configurations models. It is
not to be used to copy networked configuration models.

This procedure copies a configuration in the database. If the NEW_CONFIG_FLAG is
1, then a new CONFIG_HDR_ID value is generated for the new configuration and it is
REV_NBR 1. If NEW_CONFIG_FLAG is 0, the copy keeps the CONFIG_HDR_ID and
has a REV_NBR incremented to be greater than the original.

Considerations Before Running

Prerequisites
The configuration to be copied must exist. This procedure must not be used with
networked Models.

Timing
This procedure should be used every time a configuration is copied. The procedure
will ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_value will be zero, and
error_message will contain error information.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE copy_configuration(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 new_config_flag IN VARCHAR2,
 out_config_hdr_id IN OUT NOCOPY NUMBER,
 out_config_rev_nbr IN OUT NOCOPY NUMBER,
 error_message IN OUT NOCOPY VARCHAR2,
 return_value IN OUT NOCOPY NUMBER,
 handle_deleted_flag IN VARCHAR2 DEFAULT NULL,
 new_name IN VARCHAR2 DEFAULT NULL);

Table 17–16 on page 17-29 describes the parameters for the COPY_CONFIGURATION
procedure.

Note: If you want to copy a networked configuration model, then
you must use the copy_configuration procedure in the CZ_CONFIG_
API_PUB package. For more information see CZ_CONFIG_API_
PUB.COPY_CONFIGURATION.

Note: COPY_CONFIGURATION procedure does not commit the
copy data. It is your responsibility to commit the copied configuration.

COPY_CONFIGURATION

Programmatic Tools for Development 17-29

Considerations After Running

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Troubleshooting
Examine return_value and error_message to determine what the next step should be

Table 17–16 Parameters for the COPY_CONFIGURATION Procedure

Parameter Data Type Mode Note

config_hdr_id number in Specifies which configuration to copy. Uses
CZ_CONFIG_HDRS, CZ_CONFIG_
INPUTS, CZ_CONFIG_ITEMS, CZ_
CONFIG_MESSAGES, and CZ_CONFIG_
ATTRIBUTES.

config_rev_nbr number in Specifies which configuration to copy. Uses
CZ_CONFIG_HDRS, CZ_CONFIG_
INPUTS, CZ_CONFIG_ITEMS, CZ_
CONFIG_MESSAGESl, and CZ_CONFIG_
ATTRIBUTES.

new_config_flag varchar2 in A ’1' indicates that the copied configuration
should have a new CONFIG_HDR_ID. A
'0' indicates that the copied configuration
should have the same CONFIG_HDR_ID
and a unique CONFIG_REV_NBR. For
example it is a revision of the existing
configuration.

out_config_hdr_id number in/out Identifies the new copy of the
configuration.

out_config_rev_nbr number in/out Identifies the new copy of the
configuration.

error_message varchar2 in/out Contains an error message if an error
occurs.

return_value number in/out Indicates the success (1) or failure (0) of the
copy.

handle_deleted_flag varchar2 in When ’0’, it will undelete the copied
configuration if the original configuration
is deleted.

new_name varchar2 in Applies a new name for the configuration

CZ_CONFIG_API_PUB.COPY_CONFIGURATION

17-30 Oracle Configurator Implementation Guide

CZ_CONFIG_API_PUB.COPY_CONFIGURATION

This API procedure in the CZ_CONFIG_API_PUB package is used to copy
configurations as well as configurations that contain connectors and support
connectivity.

This procedure creates a new configuration by copying the original configuration’s
CONFIG_HDR_ID and CONFIG_REV_NBR

This procedure copies a configuration in the database. If the NEW_CONFIG_FLAG is
1, then a new CONFIG_HDR_ID value is generated for the new configuration and it is
REV_NBR 1. If NEW_CONFIG_FLAG is 0, the copy keeps the CONFIG_HDR_ID and
has a REV_NBR incremented to be greater than the original.

Considerations Before Running

Prerequisites
The configuration to be copied must exist.

Timing
This procedure should be used every time a configuration is copied. The procedure
will ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_status will be FND_
API.G_RET_STS_ERROR or FND_API.G_RET_STS_UNEXP_ERROR if an error occurs
within the procedure, and msg_data will contain error information.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE copy_configuration(p_api_version IN NUMBER
 ,p_config_hdr_id IN NUMBER
 ,p_config_rev_nbr IN NUMBER
 ,p_copy_mode IN VARCHAR2
 ,x_config_hdr_id OUT NOCOPY NUMBER
 ,x_config_rev_nbr OUT NOCOPY NUMBER
 ,x_orig_item_id_tbl OUT NOCOPY CZ_API_PUB.number_
tbl_type
 ,x_new_item_id_tbl OUT NOCOPY CZ_API_PUB.number_
tbl_type
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 ,x_msg_data OUT NOCOPY VARCHAR2
 ,p_handle_deleted_flag IN VARCHAR2 := NULL
 ,p_new_name IN VARCHAR2 := NULL
);
Table 17–17 on page 17-31 describes the parameters for the CZ_CONFIG_API_
PUB.COPY_CONFIGURATION procedure.

Note: CZ_CONFIG_API_PUB.COPY_CONFIGURATION procedure
does not commit the copy data. It is your responsibility to commit the
copied configuration.

CZ_CONFIG_API_PUB.COPY_CONFIGURATION

Programmatic Tools for Development 17-31

Table 17–17 Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION
Procedure

Parameter Data Type Mode Note

p_api_version number in Required. See API Version Numbers on
page 18-6

p_config_hdr_id number in Required. Specifies which configuration to
copy. Uses CZ_CONFIG_HDRS, CZ_
CONFIG_INPUTS, CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGES, and CZ_
CONFIG_ATTRIBUTES.

p_config_rev_nbr number in Required. Specifies which configuration to
copy. Uses CZ_CONFIG_HDRS, CZ_
CONFIG_INPUTS, CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGESl, and CZ_
CONFIG_ATTRIBUTES.

x_config_hdr_id number out Identifies the new copy of the
configuration.

x_config_rev_nbr number out Identifies the new copy of the
configuration.

p_copy_mode varchar2 in Required. Specifies whether the new
configuration has a new header ID or a
new revision number.

x_orig_item_id_tbl number out A table of the item IDs for the items in the
original configuration.

x_new_item_id_tbl number out A table of the item IDS for the items in the
new configuration.

x_return_status varchar2 out Must return FND_API.G_RET_STS_
SUCCESS if procedure completed
successfully; otherwise return FND_
API.G_RET_STS_ERROR or FND_API.G_
RET_STS_UNEXP_ERROR if an error
occurs within the procedure

x_msg_count number out Required. The number of error messages
returned in the x_msg_data parameter.

x_msg_data varchar2 out Contains an error message if the procedure
is returning an x_return_status value
of FND_API.G_RET_STS_ERROR or FND_
API.G_RET_STS_UNEXP_ERROR

p_handle_deleted_
flag

varchar2 in When ’0’, it will undelete the copied
configuration if the original configuration
is deleted.

p_new_name varchar2 in Applies a new name for the configuration

COPY_CONFIGURATION_AUTO

17-32 Oracle Configurator Implementation Guide

COPY_CONFIGURATION_AUTO

This procedure runs COPY_CONFIGURATION within an autonomous transaction. If
the copy is successful, new data will be committed to the database without affecting
the caller’s transaction.

See other information for "COPY_CONFIGURATION" on page 17-28.

Considerations Before Running

Prerequisites
The configuration to be copied must exist. This procedure must not be used with
networked Models.

Timing
This procedure should be used every time a configuration is copied. The procedure
will ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_value will be zero, and
error_message will contain error information.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE copy_configuration_auto(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 new_config_flag IN VARCHAR2,
 out_config_hdr_id IN OUT NOCOPY NUMBER,
 out_config_rev_nbr IN OUT NOCOPY NUMBER,
 Error_message IN OUT NOCOPY VARCHAR2,
 Return_value IN OUT NOCOPY NUMBER,
 handle_deleted_flag IN VARCHAR2 DEFAULT NULL,
 new_name IN VARCHAR2 DEFAULT NULL);

Table 17–18 on page 17-33 describes the parameters for the COPY_
CONFIGURATION_AUTO procedure.

Note: If you want to copy a networked configuration model
autonomously, then you must use the copy_configuration procedure
in the CZ_CONFIG_API_PUB package. For more information see CZ_
CONFIG_API_PUB.COPY_CONFIGURATION_AUTO.

Note: COPY_CONFIGURATION_AUTO procedure does not commit
the copy data. It is your responsibility to commit the copied
configuration.

COPY_CONFIGURATION_AUTO

Programmatic Tools for Development 17-33

Considerations After Running

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Troubleshooting
Examine return_value and error_message to determine what the next step should be.

Table 17–18 Parameters for the COPY_CONFIGURATION_AUTO Procedure

Parameter Data Type Mode Note

config_hdr_id number in See corresponding parameter in
Table 17–16 on page 17-29.

config_rev_nbr number in See corresponding parameter in
Table 17–16 on page 17-29.

new_config_flag varchar2 in See corresponding parameter in
Table 17–16 on page 17-29.

out_config_hdr_id number in/out See corresponding parameter in
Table 17–16 on page 17-29.

out_config_rev_nbr number in/out See corresponding parameter in
Table 17–16 on page 17-29.

error_message varchar2 in/out See corresponding parameter in
Table 17–16 on page 17-29.

return_value number in/out See corresponding parameter in
Table 17–16 on page 17-29.

handle_deleted_flag varchar2 default null in See corresponding parameter in
Table 17–16 on page 17-29.

new_name varchar2 default null in See corresponding parameter in
Table 17–16 on page 17-29.

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO

17-34 Oracle Configurator Implementation Guide

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO

This procedure runs COPY_CONFIGURATION within an autonomous transaction. If
the copy is successful, new data will be committed to the database without affecting
the caller’s transaction. This procedure can be used with networked configurations.

See other information for "COPY_CONFIGURATION" on page 17-28.

Considerations Before Running

Prerequisites
The configuration to be copied must exist.

Timing
This procedure should be used every time a configuration is copied. The procedure
will ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_status will be FND_
API.G_RET_STS_ERROR or FND_API.G_RET_STS_UNEXP_ERROR if an error occurs
within the procedure, and msg_data will contain error information.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE copy_configuration_auto
 (p_api_version IN NUMBER
 ,p_config_hdr_id IN NUMBER
 ,p_config_rev_nbr IN NUMBER
 ,p_copy_mode IN VARCHAR2
 ,x_config_hdr_id OUT NOCOPY NUMBER
 ,x_config_rev_nbr OUT NOCOPY NUMBER
 ,x_orig_item_id_tbl OUT NOCOPY CZ_API_PUB.number_tbl_type
 ,x_new_item_id_tbl OUT NOCOPY CZ_API_PUB.number_tbl_type
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 ,x_msg_data OUT NOCOPY VARCHAR2
 ,p_handle_deleted_flag IN VARCHAR2 := NULL
 ,p_new_name IN VARCHAR2 := NULL
);
Table 17–19 on page 17-34 describes the parameters for the CZ_CONFIG_API_
PUB.COPY_CONFIGURATION_AUTO procedure.

Note: CZ_AUTO_API_PUB.COPY_CONFIGURATION_AUTO
procedure does not commit the copy data. It is your responsibility to
commit the copied configuration.

Table 17–19 Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO
Procedure

Parameter Data Type Mode Note

p_api_version number in See API Version Numbers on page 18-6.

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO

Programmatic Tools for Development 17-35

Considerations After Running

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Troubleshooting
Examine return_value and error_message to determine what the next step should be.

p_config_hdr_id number in See corresponding parameter in
Table 17–16 on page 17-29.

p_config_rev_nbr number in See corresponding parameter in
Table 17–16 on page 17-29.

p_copy_mode varchar2 in Required. Specifies whether the new
configuration has a new header ID or a
new revision number.

x_config_hdr_id number out See corresponding parameter in
Table 17–16 on page 17-29.

x_config_rev_nbr number out See corresponding parameter in
Table 17–16 on page 17-29.

x_orig_item_id_tbl number out A table of the item IDs for the items in
the original configuration.

x_new_item_id_tbl number out

A table of the item IDS for the items in
the new configuration.

x_msg_count number out Required. The number of error
messages returned in the x_msg_data
parameter.

x_msg_data varchar2 out See corresponding parameter in
Table 17–16 on page 17-29.

x_return_status number out See corresponding parameter in
Table 17–16 on page 17-29.

p_handle_deleted_
flag

varchar2 default null in See corresponding parameter in
Table 17–16 on page 17-29.

p_new_name varchar2 default null in See corresponding parameter in
Table 17–16 on page 17-29.

Table 17–19 (Cont.) Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION_
AUTO Procedure

Parameter Data Type Mode Note

DEFAULT_NEW_CFG_DATES

17-36 Oracle Configurator Implementation Guide

DEFAULT_NEW_CFG_DATES

This utility procedure provides default date values used by Oracle Configurator for a
new configuration. The caller should pass in dates that will be included in the
initialization message for the runtime Oracle Configurator. The procedure will return
the value that will be used by the runtime Oracle Configurator for any dates not
passed in.

Considerations Before Running

Prerequisites
None.

Timing
This procedure should be used to find out the default dates used by the runtime
Oracle Configurator for publication lookup, effectivity, and configuration creation.

Dependencies
None.

Restrictions and Limitations
None.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE DEFAULT_NEW_CFG_DATES(p_creation_date IN OUT NOCOPY DATE,
 p_lookup_date IN OUT NOCOPY DATE,
 p_effective_date IN OUT NOCOPY DATE);

Table 17–20, " Parameters for the DEFAULT_NEW_CFG_DATES Procedure" describes
the parameters for the DEFAULT_NEW_CFG_DATES procedure.

Considerations After Running

Results
Any of the parameters (p_creation_date, p_lookup_date, p_effective_
date) that were not passed in are populated with the date that the runtime Oracle
Configurator would use for that parameter.

Table 17–20 Parameters for the DEFAULT_NEW_CFG_DATES Procedure

Parameter Data Type Mode Note

p_creation_date date in/out This specifies the creation date for the new
configuration.

p_lookup_date date in/out This specifies the lookup date for the new
configuration.

p_effective_date date in/out This specifies the effective date for the new
configuration.

DEFAULT_RESTORED_CFG_DATES

Programmatic Tools for Development 17-37

DEFAULT_RESTORED_CFG_DATES

This utility procedure provides default date values used by Oracle Configurator for a
restored configuration. The caller should pass in dates that will be included in the
initialization message for the runtime Oracle Configurator. The procedure will return
the value that will be used by the runtime Oracle Configurator for any dates not
passed in. The CONFIG_HEADER_ID and a configuration revision (CONFIG_REV_
NBR) must be supplied. Default date values are determined differently for a restored
configuration that for a new configuration.

Considerations Before Running

Prerequisites
Configuration must exist.

Timing
This procedure should be used to find out the default dates used by the runtime
Oracle Configurator for publication lookup, effectivity, and configuration creation.

Dependencies
None.

Restrictions and Limitations
None.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE DEFAULT_RESTORED_CFG_DATES(p_config_hdr_id IN NUMBER,
 p_config_rev_nbr IN NUMBER,
 p_creation_date IN OUT NOCOPY DATE,
 p_lookup_date IN OUT NOCOPY DATE,
 p_effective_date IN OUT NOCOPY DATE);

Table 17–21, " Parameters for the DEFAULT_RESTORED_CFG_DATES Procedure"
describes the parameters for the DEFAULT_RESTORED_CFG_DATES procedure.

Table 17–21 Parameters for the DEFAULT_RESTORED_CFG_DATES Procedure

Parameter Data Type Mode Note

p_config_hdr_id number in Specifies which configuration to use.

p_config_rev_nbr number in Specifies which configuration to use

p_creation_date date in/out If this is not null, then it will be returned as is.

If this is null and if p_lookup_date is null
and RestoredConfigDefaultModelLookupDate
in CZ_DB_SETTINGS is set to config_
creation_date, then sysdate is returned.
See Section 4.4.3.23 on page 4-14 for more
information

DEFAULT_RESTORED_CFG_DATES

17-38 Oracle Configurator Implementation Guide

Considerations After Running

Results
Any of the parameters (p_creation_date, p_lookup_date, p_effective_
date) that were not passed in are populated with the date that the runtime Oracle
Configurator would use for that parameter.

p_lookup_date date in/out If this is not null, then it will be returned as is.

If this is null, and if
RestoredConfigDefaultModelLookupDate in
CZ_DB_SETTINGS is set to config_
creation_date, then p_lookup_date is set
to the order line creation date. If
RestoredConfigDefaultModelLookupDate in
CZ_DB_SETTINGS is not set to config_
creation_date, then sysdate is returned.
See Section 4.4.3.23 on page 4-14 for more
information.

p_effective_date date in/out If this is not null, then it will be returned as is.
Otherwise, the existing setting for this
configuration is returned.

Table 17–21 (Cont.) Parameters for the DEFAULT_RESTORED_CFG_DATES Procedure

Parameter Data Type Mode Note

DELETE_CONFIGURATION

Programmatic Tools for Development 17-39

DELETE_CONFIGURATION

This procedure removes a configuration from the database.

Considerations Before Running

Prerequisites
The configuration to be deleted must exist. If the configuration doe not exist, then the
procedure still runs, nothing is done and there is no reporting issues.

Timing
This procedure should be used when a configuration is obsolete.

Warnings
You should not delete configurations that are referred to by any host applications.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE delete_configuration(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 usage_exists IN OUT NOCOPY NUMBER,
 Error_message IN OUT NOCOPY VARCHAR2,
 Return_value IN OUT NOCOPY NUMBER);

Table 17–22, " Parameters for the DELETE_CONFIGURATION Procedure" on
page 17-39 describes the parameters for the DELETE_CONFIGURATION procedure.

Considerations After Running

Table 17–22 Parameters for the DELETE_CONFIGURATION Procedure

Parameter Data Type Mode Note

config_hdr_id number in Specifies the header ID of the
configuration to be deleted

config_rev_nbr number in Specifies the revision number of
the configuration to be deleted

usage_exists number in/out This returns 1 if a configuration
usage record exists and the
configuration is not deleted.
(Requires custom code to
populate the CZ_CONFIG_
USAGES table.)

error_message varchar2 in/out If there is an error, then this field
contains a message describing
the error.

return_value number in/out If 1, then the configuration was
successfully deleted. If 0, then
deletion of the configuration
failed.

DELETE_CONFIGURATION

17-40 Oracle Configurator Implementation Guide

Troubleshooting
Examine the output in the error_message parameter.

ICX_SESSION_TICKET

Programmatic Tools for Development 17-41

ICX_SESSION_TICKET

This function returns a value for the ICX session ticket that Oracle Applications should
pass in the icx_session_ticket parameter of the initialization message when
calling Oracle Configurator. See icx_session_ticket on page 9-18 in Chapter 9, "Session
Initialization" for information about that parameter.

This ticket allows the runtime Oracle Configurator to maintain the Oracle Applications
session identity. A null value is returned if user_id, resp_id, or appl_id are
not defined within the Oracle Applications session or if the ICX calls fail.

For more information about the ICX session ticket, including the profile option ICX:
Session Timeout, see the Oracle Applications System Administrator’s Guide - Maintenance.

Considerations Before Running

Prerequisites
In order to use this function, the database session must have been initialized with
Oracle Applications parameters in order for the icx_session_ticket to return a value.

Timing
This function should be used before launching a configuration session from PL/SQL.

Syntax and Parameters
The syntax for this function is:

FUNCTION icx_session_ticket RETURN VARCHAR2;

There are no parameters for this function. It derives its inputs from the environment of
the database session.

Considerations After Running

Results
This function returns the ICX ticket that represents the Oracle Applications session.

Troubleshooting
If this function returns NULL, the database session is not an Oracle Applications
session.

MODEL_FOR_ITEM

17-42 Oracle Configurator Implementation Guide

MODEL_FOR_ITEM

This function returns a published Model passed on the inventory item ID,
organization id, and applicability.

This function is used for backward compatibility. It calls CONFIG_MODEL_FOR_
ITEM with usage_name equal to "Any Usage" and publication_mode equal to ’P’.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION model_for_item(inventory_item_id NUMBER,
 organization_id NUMBER,
 config_creation_date DATE,
 user_id NUMBER,
 responsibility_id NUMBER,
 calling_application_id NUMBER)
RETURN NUMBER;

Table 17–23, " Parameters for the MODEL_FOR_ITEM Function" on page 17-42
describes the parameters for the MODEL_FOR_ITEM function.

Table 17–23 Parameters for the MODEL_FOR_ITEM Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, then this is the inventory item ID for
the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, then this is the organization ID for
the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

MODEL_FOR_ITEM

Programmatic Tools for Development 17-43

Considerations After Running

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

config_creation_date date in This is the lookup date for the
configuration

user_id number in This is the ID for the Oracle Applications
user that is logged into from FND_USER.

responsibility_id number in This is the responsibility that the Oracle
Applications user had in the host
application.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–23 (Cont.) Parameters for the MODEL_FOR_ITEM Function

Parameter Data Type Mode Note

MODEL_FOR_PUBLICATION_ID

17-44 Oracle Configurator Implementation Guide

MODEL_FOR_PUBLICATION_ID

This function returns the Model ID for a specified publication.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Syntax and Parameters
The syntax for this function is:

FUNCTION model_for_publication_id (publication_id NUMBER)
RETURN NUMBER;

Table 17–24, " Parameters for the MODEL_FOR_PUBLICATION_ID Function" on
page 17-44 describes the parameters for the MODEL_FOR_PUBLICATION_ID
function.

Table 17–24 Parameters for the MODEL_FOR_PUBLICATION_ID Function

Parameter Data Type Mode Note

publication_id number in This is the specified publication id in the CZ_
MODEL_PUBLICATIONS table.

PUBLICATION_FOR_ITEM

Programmatic Tools for Development 17-45

PUBLICATION_FOR_ITEM

This function returns the publication ID for a specified inventory item.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION publication_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–25, " Parameters for the PUBLICATION_FOR_ITEM Function" on page 17-45
describes the parameters for the PUBLICATION_FOR_ITEM function.

Table 17–25 Parameters for the PUBLICATION_FOR_ITEM Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, then this is the Inventory Item ID
for the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, then this is the organization ID for
the published Model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

PUBLICATION_FOR_ITEM

17-46 Oracle Configurator Implementation Guide

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2 in Usage name to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–25 (Cont.) Parameters for the PUBLICATION_FOR_ITEM Function

Parameter Data Type Mode Note

PUBLICATION_FOR_PRODUCT

Programmatic Tools for Development 17-47

PUBLICATION_FOR_PRODUCT

This function returns the publication ID for a product key.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, profile
option values will be checked. However, Oracle Applications session parameters are
not defined by default within a SQL*Plus session. If profile option values are not
defined for this or any other reason, the defaults for usage_name and/or
publication_mode will be "Any Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION publication_for_product(product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–26, " Parameters for the PUBLICATION_FOR_PRODUCT Function" on
page 17-47 describes the parameters for the PUBLICATION_FOR_PRODUCT function.

Table 17–26 Parameters for the PUBLICATION_FOR_PRODUCT Function

Parameter Data Type Mode Note

product_key varchar2 in Product key to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

PUBLICATION_FOR_PRODUCT

17-48 Oracle Configurator Implementation Guide

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–26 (Cont.) Parameters for the PUBLICATION_FOR_PRODUCT Function

Parameter Data Type Mode Note

PUBLICATION_FOR_SAVED_CONFIG

Programmatic Tools for Development 17-49

PUBLICATION_FOR_SAVED_CONFIG

This function is used to determine the publication that should be used to reopen a
saved configuration. The function returns a publication ID for an existing
configuration based on its model information and applicability parameters.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a model to be returned. This function must be run on the
instance that the model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

FUNCTION publication_for_saved_config (config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Table 17–27, " Parameters for the PUBLICATION_FOR_SAVED_CONFIG Function" on
page 17-49 describes the parameters for the PUBLICATION_FOR_SAVED_CONFIG
function.

Table 17–27 Parameters for the PUBLICATION_FOR_SAVED_CONFIG Function

Parameter Data Type Mode Note

config_hdr_id number in Identifies the saved configuration to use.

config_rev_nbr number in Identifies the saved configuration.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

PUBLICATION_FOR_SAVED_CONFIG

17-50 Oracle Configurator Implementation Guide

calling_application_id number in The registered ID of an application for
which the model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

usage_name varchar2 in Usage name to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

language varchar2 in Language code to search for in the
publication.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–27 (Cont.) Parameters for the PUBLICATION_FOR_SAVED_CONFIG Function

Parameter Data Type Mode Note

UI_FOR_ITEM

Programmatic Tools for Development 17-51

UI_FOR_ITEM

This function returns a UI definition (ui_def_id) for a given inventory item
(inventory_item_id) and organization item (organization_id) based on
publication applicability parameters.

This function is used for backward compatibility. It calls CONFIG_UI_FOR_ITEM with
usage_name equal to "Any Usage" and publication_mode equal to ’P’.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a model to be returned. This function must be run on the
instance that the model is published to.

Syntax and Parameters
The syntax for this function is:

FUNCTION ui_for_item(inventory_item_id NUMBER,
 organization_id NUMBER,
 config_creation_date DATE,
 ui_type VARCHAR2,
 user_id NUMBER,
 responsibility_id NUMBER,
 calling_application_id NUMBER)
RETURN NUMBER;

Table 17–28, " Parameters for the UI_FOR_ITEM Function" on page 17-51 describes the
parameters for the UI_FOR_ITEM function.

Table 17–28 Parameters for the UI_FOR_ITEM Function

Parameter Data Type Mode Note

inventory_item_id number in If the model was imported from Oracle
BOM, then this is the Inventory Item ID
for the published model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the model was imported from Oracle
BOM, then this is the organization ID for
the published model, from the MTL_
SYSTEM_ITEMS table, on which
configuration models are based.

config_creation_date date in This is the date the configuration was
created.

UI_FOR_ITEM

17-52 Oracle Configurator Implementation Guide

Considerations After Running

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

ui_type varchar2 in This is the type of published UI sought
and found for each product. Values are
’APPLET’, ’DHTML’, or ’JRAD’.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the publication
UI type can be either APPLET, DHTML,
or JRAD.

If DHTML or JRAD is passed and there is
no publication available for the item, then
the API returns the user interface ID of
the BOM JRAD UI.

user_id number in This is the ID for the Oracle Applications
user that is logged into from FND_USER.

responsibility_id number in This is the responsibility that the Oracle
Applications user had in the host
application.

calling_application_id number in The registered ID of an application for
which the model is published.

See Section 17.2.7.2, "Applicability
Parameters" on page 17-5.

Table 17–28 (Cont.) Parameters for the UI_FOR_ITEM Function

Parameter Data Type Mode Note

UI_FOR_PUBLICATION_ID

Programmatic Tools for Development 17-53

UI_FOR_PUBLICATION_ID

This function returns a UI definition (ui_def_id) for a specified publication ID.

Considerations Before Running

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a model to be returned. This function must be run on the
instance that the model is published to.

Syntax and Parameters
The syntax for this function is:

FUNCTION ui_for_publication_id (publication_id NUMBER)
RETURN NUMBER;

Table 17–29, " Parameters for the UI_FOR_PUBLICATION_ID Function" on page 17-53
describes the parameters for the UI_FOR_PUBLICATION_ID function. See
Example 17–1 on page 17-53 for an example of how these parameters are used.

Example
When called in SQL*Plus, this example prints out the ID of the UI definition associated
with the publication identified by the publication_id parameter. If the
publication has no associated UI, then a message is printed.

Example 17–1 Using the UI_FOR_PUBLICATION_ID Function

set serveroutput on

DECLARE
v_ui_def_id number;
BEGIN
-- The publication must have status of 'OK' ("Complete").
 v_ui_def_id := cz_cf_api.ui_for_publication_id(12345);
 IF v_ui_def_id IS NULL THEN
 dbms_output.put_line('UI Def ID: '||'NOT FOUND');
 ELSE
 dbms_output.put_line('UI Def ID: '||v_ui_def_id);
 END IF;
END;

Table 17–29 Parameters for the UI_FOR_PUBLICATION_ID Function

Parameter Data Type Mode Note

publication_id number in This is the specified publication id in the CZ_
MODEL_PUBLICATIONS table.

VALIDATE

17-54 Oracle Configurator Implementation Guide

VALIDATE

This procedure validates a configuration. You can use this procedure to check whether
a configuration is still valid after an event that may cause it to become invalid. Such
events might include the following:

■ A change in the configuration rules

■ The importing of the configuration from another system

■ A change to the configuration inputs by another program

■ The ordered configured BOM Items (input_list) do not match the batch validation
BOM Items (from a previously processed configuration)

This procedure is a single call validation procedure that uses tables to exchange
multi-valued data. A validation_status and a table of XML messages are returned.

Considerations Before Running

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE VALIDATE (config_input_list IN CFG_INPUT_LIST,
 init_message IN VARCHAR2,
 config_messages IN OUT NOCOPY CFG_OUTPUT_PIECES,
 validation_status IN OUT NOCOPY NUMBER,
 URL IN VARCHAR2 DEFAULT FND_PROFILE.Value('CZ_UIMGR_URL'),
 p_validation_type IN VARCHAR2 DEFAULT CZ_API_PUB.VALIDATE_
ORDER));

Table 17–30, " Parameters for the VALIDATE Procedure" on page 17-54 describes the
parameters for the VALIDATE procedure.

Table 17–30 Parameters for the VALIDATE Procedure

Parameter Data Type Mode Note

config_input_list CFG_INPUT_
LIST1

in This is a list of input selections.

init_message varchar2 in Initialization message

config_messages CFG_OUTPUT_
PIECES2

out This is a table of the output XML messages
produced by validating the configuration.

validation_status varchar2 out The status code returned by validating the
configuration:
0 - CONFIG_PROCESSED
1 - CONFIG_PROCESSED_NO_TERMINATE
2 - INIT_TOO_LONG
3 - INVALID_OPTION_REQUEST
4 - CONFIG_EXCEPTION
5 - DATABASE_ERROR
6 - UTL_HTTP_INIT_FAILED
7 - UTL_HTTP_REQUEST_FAILED

VALIDATE

Programmatic Tools for Development 17-55

Example
For an example of how these parameters are used, see Section 11.3, "Calling the CZ_
CF_API.VALIDATE Procedure" on page 11-3.

Considerations After Running

Results
This procedure returns the values listed in Table 17–31, " Values Returned by the
VALIDATE Procedure" on page 17-55.

url varchar2 in The URL for the Oracle Configurator Servlet.
Default will interrogate the current profile for
this URL, using FND_PROFILE.Value('CZ_
UIMGR_URL').

p_validation_
type

varchar2 in The possible values are CZ_API_
PUB.VALIDATE_ORDER, CZ_API_
PUB.VALIDATE_FULFILLMENT, and CZ_
API_PUB.INTERACTIVE. The default is CZ_
API_PUB.VALIDATE_ORDER.

1 See Section 17.3.1, "Custom Data Types" on page 17-6 for a definition of this type.
2 See Section 17.3.1, "Custom Data Types" on page 17-6 for a definition of this type.

Table 17–31 Values Returned by the VALIDATE Procedure

Return Value Description

CONFIG_PROCESSED Configuration processed successfully, and a
termination message was returned.

CONFIG_PROCESSED_NO_TERMINATE Configuration processed, but no termination
message was returned.

INIT_TOO_LONG Initialization message must be less than 2048
characters.

INVALID_OPTION_REQUEST Returned when an input does not include a
component code or quantity.

CONFIG_EXCEPTION Unknown error

DATABASE_ERROR Unknown error

UTL_HTTP_INIT_FAILED Procedure uses UTL_HTTP package to pass data
to Configurator Servlet. These exceptions can be
returned by UTL_HTTP procedures. See Oracle8i
Supplied PL/SQL Packages Reference for additional
information.

UTL_HTTP_REQUEST_FAILED

Table 17–30 (Cont.) Parameters for the VALIDATE Procedure

Parameter Data Type Mode Note

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

17-56 Oracle Configurator Implementation Guide

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

This procedure verifies that the specified configuration exists and returns whether it is
valid or complete. This procedure functions like a view. The procedure queries the
configuration data checking that the configuration exists in the CZ schema. This query
provides essential information to downstream applications without directly querying
the database.

Considerations Before Running

Timing
This procedure should be used after the 18 Configurator builds. The procedure
validates that the configuration header is a session header and not an instance header.

Dependencies

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE verify_configuration(p_api_version IN NUMBER
 ,p_config_hdr_id IN NUMBER
 ,p_config_rev_nbr IN NUMBER
 ,x_exists_flag OUT NOCOPY VARCHAR2
 ,x_valid_flag OUT NOCOPY VARCHAR2
 ,x_complete_flag OUT NOCOPY VARCHAR2
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 ,x_msg_data OUT NOCOPY VARCHAR2
);
Table 17–32, " Parameters for the CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
Procedure" on page 17-56 describes the parameters for the CZ_CONFIG_API_
PUB.VERIFY_CONFIGURATION procedure.

Table 17–32 Parameters for the CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
Procedure

Parameter Data Type Mode Note

p_api_version number in Required. See API Version Numbers on
page 18-6.

p_config_hdr_id number in Required. Header ID of the configuration to
be verified.

p_config_rev_nbr number in Required. Revision number of the
configuration to be verified.

x_exists_flag varchar2 out If config_hdr_id and config_rev_nbr describe
a saved configuration, then FND_API.G_
TRUE is returned.
If there is no saved configuration, then FND_
API.G_FALSE is returned.

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

Programmatic Tools for Development 17-57

x_valid_flag varchar2 out If the configuration exists and is valid, then
FND_API.G_TRUE is returned.
If the configuration exists but is invalid, then
FND_API.G_FALSE is returned.
If the configuration does not exist then NULL.

x_complete_flag varchar2 out If the configuration exists and is complete,
then FND_API.G_TRUE is returned.
If the configuration exists but is incomplete,
then FND_API.G_FALSE is returned.
If the configuration does not exist, then
NULL.

x_return_status varchar2 out Must return FND_API.G_RET_STS_SUCCESS
if procedure completed successfully;
otherwise return FND_API.G_RET_STS_
ERROR or FND_API.G_RET_STS_UNEXP_
ERROR if an error occurs within the
procedure

x_msg_count number out The number of error messages returned in the
x_msg_data parameter.

x_msg_data varchar2 out See corresponding parameter in Table 17–17
on page 17-31.

Table 17–32 (Cont.) Parameters for the CZ_CONFIG_API_PUB.VERIFY_
CONFIGURATION Procedure

Parameter Data Type Mode Note

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

17-58 Oracle Configurator Implementation Guide

Programmatic Tools for Maintenance 18-1

18
Programmatic Tools for Maintenance

This chapter describes a set of programmatic tools that you can use primarily to
maintain a deployed runtime Oracle Configurator. This includes:

■ Choosing the Right Tool for the Job

■ Queries to Support the CZ_modelOperations_pub Package

■ Reference for the CZ_modelOperations_pub Package

For information on tools for developing a configuration model or deploying a runtime
Oracle Configurator, see Chapter 17, "Programmatic Tools for Development".

18.1 Overview of the CZ_modelOperations_pub Package
The programmatic tools that you use to maintain a deployed runtime Oracle
Configurator are provided in the PL/SQL package CZ_modelOperations_pub.

18.1.1 Purpose of the Package
The CZ_modelOperations_pub package contains a set of APIs that enable you to
automate day-to-day maintenance activities, thus reducing the maintenance workload.
The operations covered by this are:

■ Importing and refreshing configuration models with data from Oracle
Applications BOMs

■ Generation and refreshing of logic and User Interfaces

■ Publication of generated logic and User Interfaces

■ Initial execution and refreshing of Item Master Populators

■ Force unlocking of Models in Oracle Configurator

■ Force unlocking of User Interface Content Templates in Oracle Configurator

18.1.2 Installation of the Package
The information provided for the package CZ_CF_API in Section 17.1.3, "Installation
of the Packages" on page 17-2 also applies to the package CZ_modelOperations_pub.

18.1.3 References for Working with PL/SQL Procedures and Functions
For background information and details on basic aspects of working with the PL/SQL
procedures and functions in this package, see Table 17–2 on page 17-3 in Section 17.1.4,

Choosing the Right Tool for the Job

18-2 Oracle Configurator Implementation Guide

"References for Working with PL/SQL Procedures and Functions", which suggests
relevant topics in the Oracle Documentation Library.

18.2 Choosing the Right Tool for the Job
The list in Table 18–1, " Uses of Procedures and Functions in the CZ_
modelOperations_pub package" on page 18-2 guides you in choosing the appropriate
procedure or function for the task you want to perform. These procedures and
functions are described in detail in Section 18.4.3, "Procedures and Functions in the
CZ_modelOperations_pub Package" on page 18-7.

18.3 Queries to Support the CZ_modelOperations_pub Package
This section contains PL/SQL queries that indicate the values you need to provide as
parameters to certain procedures in the CZ_modelOperations_pub package.

18.3.1 Querying for Model and Folder IDs
You can determine the IDs of Models and folders in the Repository of Oracle
Configurator Developer by customizing a View so that it displays the column
DatabaseId. See the Oracle Configurator Developer User’s Guide for details on
customizing Views.

Table 18–1 Uses of Procedures and Functions in the CZ_modelOperations_pub
package

Area For This Purpose ...
Use This Procedure or
Function ...

Repository To create a folder in the Repository, or
check whether a folder exists

CREATE_RP_FOLDER

RP_FOLDER_EXISTS

Models To import or refresh Models IMPORT_SINGLE_BILL

IMPORT_GENERIC

REFRESH_SINGLE_MODEL

To make a deep copy of a specified
Model

DEEP_MODEL_COPY

To publish or republish Models PUBLISH_MODEL

REPUBLISH_MODEL

To run Populators EXECUTE_POPULATOR

REPOPULATE

To force unlock a Model FORCE_UNLOCK_MODEL

Rules To generate logic GENERATE_LOGIC

User Interfaces To generate or refresh a user interface CREATE_JRAD_UI

REFRESH_JRAD_UI

CREATE_UI (DHTML or Java
Applet UI)

REFRESH_UI (DHTML or
Java Applet UI)

To force unlock a UI Content Template FORCE_UNLOCK_
TEMPLATE

Queries to Support the CZ_modelOperations_pub Package

Programmatic Tools for Maintenance 18-3

You can also use a database query to list these IDs. Example 18–1 on page 18-3
provides a SQL query that lists the names and IDs of source (not published) Models,
and the folders that contain them in the Repository of Oracle Configurator Developer.

The ID of a Model is stored as CZ_DEVL_PROJECTS.DEVL_PROJECT_ID. This query
selects a value for DEVL_PROJECT_ID. This ID can then be used as a value for the
parameter p_devl_project_id or p_model_id to the following procedures:

■ CREATE_JRAD_UI

■ CREATE_UI

■ DEEP_MODEL_COPY

■ FORCE_UNLOCK_MODEL

■ GENERATE_LOGIC

■ REFRESH_SINGLE_MODEL

■ REPOPULATE

The ID of a folder that contains a specified Model is stored as CZ_RP_
ENTRIES.ENCLOSING_FOLDER. This query selects a value for ENCLOSING_
FOLDER. This ID can then be used as a value for the parameter p_encl_folder_id
to the following procedures:

■ CREATE_RP_FOLDER

■ RP_FOLDER_EXISTS

Example 18–1 Query for Models and Folders

select
 P.devl_project_id,
 P.name,
 R.enclosing_folder,
 R2.name FOLDER
from
 cz_devl_projects P,
 cz_rp_entries R,
 cz_rp_entries R2
where
 R.object_type = 'PRJ' and
 R.deleted_flag = '0' and
 P.deleted_flag = '0' and
 P.devl_project_id = R.object_id and
 R2.object_id = R.enclosing_folder and
 R2.object_type ='FLD';

You can add the following condition to the beginning of the WHERE clause of this
query to specify the name of a particular Model as it appears in Oracle Configurator
Developer.

 P.name like '%your Model’s name%' and

You can add the following condition to the beginning of the WHERE clause of this
query to specify the name of a particular folder as it appears in Oracle Configurator
Developer.

 R2.name like 'your folder’s name%' and

Queries to Support the CZ_modelOperations_pub Package

18-4 Oracle Configurator Implementation Guide

18.3.2 Querying for User Interface IDs
You can determine the IDs of User Interfaces by examining the UI ID column in the
User Interfaces area of the Workbench of Oracle Configurator Developer. See the
Oracle Configurator Developer User’s Guide for details on customizing Views.

You can also use a database query to list these IDs. Example 18–2 on page 18-4
provides a SQL query that lists the names and IDs of available user interfaces for a
specified Model. To determine the devl_project_ID for the specified Model, use
the query in Example 18–1 on page 18-3.

This query selects values for the column CZ_UI_DEFS.UI_DEF_ID. This UI_DEF_ID is
returned by the procedures CREATE_UI and CREATE_JRAD_UI. You would use this
ID as a value for the p_ui_def_id parameter for the procedures REFRESH_UI and
REFRESH_JRAD_UI.

Example 18–2 Query for User Interface IDs

select
 ui_def_id,
 name
from
 cz_ui_defs
where
 devl_project_id = devl_project_ID
and
 deleted_flag = '0';

18.3.3 Querying for Referenced User Interface IDs
Example 18–3 on page 18-4 provides a SQL query that lists the UIs for a given Model
and all referenced Models of the given Model.

Example 18–3 on page 18-4 provides a SQL query that lists the IDs of available
referenced (child)DHTML and Java Applet user interfaces for a specified parent_ui_
def_ID. To determine the parent_ui_def_ID for a specified Model, use the query
in Example 18–2 on page 18-4.

This query selects a value for the column CZ_UI_NODES.UI_DEF_ID. Use this value
as a parameter for the following procedures:

■ REFRESH_UI

Example 18–3 Query for Referenced DHTML and Java Applet User Interface IDs

select distinct
 ui_def_id
from
 cz_ui_nodes
where
 cz_ui_nodes.deleted_flag = '0'
start with
 ui_def_id = parent_ui_def_ID
connect by
 prior cz_ui_nodes.ui_def_ref_id = cz_ui_nodes.ui_def_id
 and prior deleted_flag = '0'
order by
 cz_ui_nodes.ui_def_id;

Queries to Support the CZ_modelOperations_pub Package

Programmatic Tools for Maintenance 18-5

18.3.4 Querying for Populators
Example 18–4 on page 18-5 provides a SQL query that lists the names and IDs of
Populators for a given Model.

To determine the devl_project_ID_for_model for the specified Model, use the
query in Example 18–1 on page 18-3.

This query selects a value for the column CZ_POPULATORS.POPULATOR_ID. Use
this value as a parameter for the following procedures:

■ EXECUTE_POPULATOR

Example 18–4 Query for Populators

select
 populator_id,
 a.name POPULATOR_NAME,
 b.ps_node_id,
 b.name
from
 cz_populators a,
 cz_ps_nodes b
where
 a.owned_by_node_id = b.ps_node_id
and
 b.devl_project_id = devl_project_ID_for_model
and
 a.deleted_flag = '0'
 and b.deleted_flag = '0';

18.3.5 Querying for Error and Warning Information
Example 18–5 on page 18-6 provides a SQL query that retrieves the error and warning
information that is recorded in the table CZ_DB_LOGS after you run one of the
following procedures:

■ CREATE_UI

■ CREATE_JRAD_UI

■ CREATE_RP_FOLDER

■ DEEP_MODEL_COPY

■ EXECUTE_POPULATOR

■ FORCE_UNLOCK_MODEL

■ FORCE_UNLOCK_TEMPLATE

■ GENERATE_LOGIC

■ IMPORT_GENERIC

■ IMPORT_SINGLE_BILL

■ PUBLISH_MODEL

■ REFRESH_JRAD_UI

■ REFRESH_SINGLE_MODEL

■ REFRESH_UI

■ REPOPULATE

Reference for the CZ_modelOperations_pub Package

18-6 Oracle Configurator Implementation Guide

■ REPUBLISH_MODEL

This query selects values for the columns URGENCY, STATUSCODE, and MESSAGE
from the table CZ_DB_LOGS.

URGENCY and STATUSCODE only have significant values when populated by the
GENERATE_LOGIC procedure. The URGENCY values used by GENERATE_LOGIC
are 0 for errors and 1 for warnings. STATUSCODE values are not meaningful to the
user but are important to the Oracle Configurator engineering team for the debugging
of logic generation code.

Example 18–5 Query for Error and Warning Information

select
 urgency,
 statuscode,
 message
from
 cz_db_logs
where
 run_id = run_ID_returned_from_procedure;

18.4 Reference for the CZ_modelOperations_pub Package
■ This section provides descriptions of each of the procedures in the CZ_

modelOperations_pub package. These procedures are listed alphabetically in
Table 18–2 on page 18-7.

■ Descriptions of the custom data types defined in the package are also provided, in
Custom Data Types on page 18-6.

■ For a basic example of how to call one of the functions in the CZ_CF_API package,
see Example 18–6, "Using the GENERATE_LOGIC Procedure" on page 18-21.

■ See also Section 18.1, "Overview of the CZ_modelOperations_pub Package" on
page 18-1.

18.4.1 Custom Data Types
There are no custom data types defined in the CZ_modelOperations_pub package.

18.4.2 API Version Numbers
Oracle APIs incorporate a mechanism called API version numbers. This mechanism:

■ Allows an API to differentiate between changes that require you to change your
API calling code and those that don't.

■ Allows an API to detect incompatible calls.

■ Allows you to quickly determine if calling a new version of an API requires you to
change any of your code.

■ Allows you to easily figure out which version of an API you need to call to take
advantage of new features.

18.4.2.1 Format of API Version Numbers
API version numbers consist of two segments separated by a decimal point. The first
segment is the major version number; the second segment is the minor version
number. The starting version number for an API is always 1.0. Examples:

Reference for the CZ_modelOperations_pub Package

Programmatic Tools for Maintenance 18-7

If the major version number has changed, then you probably need to modify your
programs that call that API. Major version changes include changes to the list of
required parameters or changing the value of an API OUT parameter.

If only the minor version number has changed, then you probably do not need to
modify your programs.

18.4.2.2 Current API Version Number for This Package
The API version number for the APIs included in the current version of the CZ_
modelOperations_pub package is:

1.0

The local constant that stores this version number is:

l_api_version CONSTANT NUMBER

18.4.2.3 Checking for Incompatible API Calls
To detect incompatible calls, programs calling an API must pass an API version
number as one of the input parameters. The API can then compare the passed version
number to its current version number, and detect any incompatible calls.

The Oracle standard parameter used by all procedures in this package to pass in the
API version number is:

p_api_version IN NUMBER

This parameter is required, and has no initial values, thus forcing your program to
pass this parameter when calling an API.

If your call to the API results in a version incompatibility, then an error message is
inserted in the table CZ_DB_LOGS. You can examine the message using a query like
the one shown in Example 18–5 on page 18-6.

18.4.3 Procedures and Functions in the CZ_modelOperations_pub Package
This section provides descriptions of each of the procedures and functions in the CZ_
modelOperations_pub package, arranged alphabetically. These procedures and
functions are listed in Table 18–2 on page 18-7.

API Version Number Major Version Minor Version

1.0 1 0

2.4 2 4

Table 18–2 Procedures and Functions in the Package CZ_modelOperations_pub

API Name P/F1

CREATE_RP_FOLDER on page 18-9 P

CREATE_UI on page 18-11 P

CREATE_JRAD_UI on page 18-13 P

DEEP_MODEL_COPY on page 18-15 P

EXECUTE_POPULATOR on page 18-17 P

Reference for the CZ_modelOperations_pub Package

18-8 Oracle Configurator Implementation Guide

FORCE_UNLOCK_MODEL on page 18-18 P

FORCE_UNLOCK_TEMPLATE on page 18-20 P

GENERATE_LOGIC on page 18-21 P

IMPORT_SINGLE_BILL on page 18-23 P

IMPORT_GENERIC on page 18-24 P

PUBLISH_MODEL on page 18-26 P

REFRESH_SINGLE_MODEL on page 18-27 P

REFRESH_UI on page 18-28 P

REFRESH_JRAD_UI on page 18-29 P

REPOPULATE on page 18-30 P

REPUBLISH_MODEL on page 18-31 P

RP_FOLDER_EXISTS on page 18-33 F
1 P = procedure, F = function

Table 18–2 (Cont.) Procedures and Functions in the Package CZ_modelOperations_pub

API Name P/F1

CREATE_RP_FOLDER

Programmatic Tools for Maintenance 18-9

CREATE_RP_FOLDER

The CREATE_RP_FOLDER procedure creates a new folder in the specified enclosing
(parent) folder of the Repository of Oracle Configurator Developer.

If a folder with the same name already exists in the enclosing folder, then that folder’s
ID is returned in the x_new_folder_id parameter. You can use the function RP_
FOLDER_EXISTS to determine beforehand whether a folder exists.

See also:

■ "RP_FOLDER_EXISTS" on page 18-33

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can create a folder in Oracle
Configurator Developer, by using the Create icon in the Repository. See the Oracle
Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE create_rp_folder(p_api_version IN NUMBER
 ,p_encl_folder_id IN CZ_RP_ENTRIES.OBJECT_ID%TYPE
 ,p_new_folder_name IN CZ_RP_ENTRIES.NAME%TYPE
 ,p_folder_desc IN
 CZ_RP_ENTRIES.DESCRIPTION%TYPE
 ,p_folder_notes IN CZ_RP_ENTRIES.NOTES%TYPE
 ,x_new_folder_id OUT NOCOPY CZ_RP_ENTRIES.OBJECT_
ID%TYPE
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 , OUT NOCOPY VARCHAR2
);

Table 18–3 on page 18-9 describes the parameters for the CREATE_RP_FOLDER
procedure.

Table 18–3 Parameters for the CREATE_RP_FOLDER Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_encl_folder_id in number Required. The ID of the enclosing (parent)
folder in which you are creating the new
folder. To determine the ID of a folder, see
Section 18.3.1, "Querying for Model and Folder
IDs" on page 18-2. To specify the root folder of
the Repository, use the constant RP_ROOT_
FOLDER.

p_new_folder_name in varchar2 Required. The name of the new folder that you
are creating.

p_folder_desc in varchar2 A description for the new folder that you are
creating

CREATE_RP_FOLDER

18-10 Oracle Configurator Implementation Guide

p_folder_notes in varchar2 Notes text for the new folder that you are
creating

x_new_folder_id out number The ID of the new folder created. If a folder
with the same new name already exists in the
enclosing folder, the ID of that existing folder.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR, FND_
API.G_RET_STS_SUCCESS, FND_API.G_
RET_STS_UNEXP_ERROR.

x_msg_count out number The number of error messages returned in the
parameter.

x_msg_data out varchar2 A string that contains any error messages.

Table 18–3 (Cont.) Parameters for the CREATE_RP_FOLDER Procedure

Parameter Mode Data Type Note

CREATE_UI

Programmatic Tools for Maintenance 18-11

CREATE_UI

The CREATE_UI procedure generates a new user interface for a model. This procedure
generates only legacy Configurator User Interfaces (DHTML or Java applet) of the
type generated with the limited edition of Oracle Configurator Developer.

If referenced models are present, then the behavior is the following:

1. If a referenced model has one or more user interfaces of the input UI style
(DHTML or Applet), then the root UI will refer to the last UI created with this
style.

2. If a referenced model has no user interface, the procedure will generate a new UI
for that model.

See also:

■ "REFRESH_UI" on page 18-28

■ "CREATE_JRAD_UI" on page 18-13

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can create a UI in the limited edition of
Oracle Configurator Developer. See the About Oracle Configurator documentation for
details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE create_ui(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 x_ui_def_id OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER,
 p_ui_style IN VARCHAR2 DEFAULT 'COMPONENTS',
 p_frame_allocation IN NUMBER DEFAULT 30,
 p_width IN NUMBER DEFAULT 640,
 p_height IN NUMBER DEFAULT 480,
 p_show_all_nodes IN VARCHAR2 DEFAULT '0',
 p_look_and_feel IN VARCHAR2 DEFAULT 'BLAF',
 p_wizard_style IN VARCHAR2 DEFAULT '0',
 p_max_bom_per_page IN NUMBER DEFAULT 10,
 p_use_labels IN VARCHAR2 DEFAULT '1');

Table 18–4 on page 18-11 describes the parameters for the CREATE_UI procedure.

Table 18–4 Parameters for the CREATE_UI Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_devl_project_id in number The ID of the Model for which to create a UI.
See Example 18–1 on page 18-3 for a query that
provides this ID (DEVL_PROJECT_ID).

CREATE_UI

18-12 Oracle Configurator Implementation Guide

x_ui_def_id out number The ID of the UI that is created. This is stored
as CZ_UI_DEFS.UI_DEF_ID.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If
there are no warnings or errors, then 0 is
stored.

x_status out number Either G_STATUS_ERROR or G_STATUS_
SUCCESS.

p_ui_style in varchar2 The style of the UI. Values are: '0' or
'COMPONENTS' for a Component Tree
(DHTML) style, '3' or 'APPLET' for an Applet
UI style. The default is ‘COMPONENTS’.

p_frame_allocation in number The left-hand frame allocation for the new UI,
in %. The default is 30 (30% of the screen
allocated to the left-hand frame).

p_width in number The width of the screens in the new UI, in
pixels. The default is 640.

p_height in number The height of the screens in the new UI, in
pixels. The default is 480.

p_show_all_nodes in varchar2 Controls whether the "display in UI" flag on
Model nodes is respected.

If this parameter is '1', then the new UI will
include all Model nodes including those
marked as "do not display in UI".

If this parameter is '0', then the new UI will
respect the "display in UI" flag on Model
nodes.

The default is ‘0’.

p_look_and_feel in varchar2 The look and feel for the new UI. Values are:
'BLAF', 'APPLET', or 'FORMS'. The default is
'BLAF'. ’FORMS’ can only be used if p_ui_style
is ’COMPONENTS’. The default is 'BLAF'.

p_wizard_style in varchar2 Whether to generate wizard style navigation.
Values are: ’0’ for No, ’1’ for Yes. The default is
’0’ (No).

p_max_bom_per_page in number The maximum number of BOM Option Class
children per screen. The default is 10.

p_use_labels in varchar2 Indicates how to generate captions: ’0’ for
description only, ’1’ for name only, ’2’, for
name and description. The default is ’1’.

Table 18–4 (Cont.) Parameters for the CREATE_UI Procedure

Parameter Mode Data Type Note

CREATE_JRAD_UI

Programmatic Tools for Maintenance 18-13

CREATE_JRAD_UI

The CREATE_JRAD_UI procedure generates a new User Interface for a Model. This
procedure generates only User Interfaces that are based on the OA Framework. For
more information on the OA Framework, see the Oracle Applications Framework
Release 11i Documentation Road Map (Metalink Note # 275880.1).

See also:

■ "REFRESH_JRAD_UI" on page 18-29

■ "CREATE_UI" on page 18-11

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can create a UI in Oracle Configurator
Developer, in the UI area of the Workbench. See the Oracle Configurator Developer User’s
Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE create_jrad_ui(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_show_all_nodes IN VARCHAR2,
 p_master_template_id IN NUMBER,
 p_create_empty_ui IN VARCHAR2,
 x_ui_def_id OUT NOCOPY NUMBER,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 OUT NOCOPY VARCHAR2);

Table 18–5 on page 18-13 describes the parameters for the CREATE_JRAD_UI
procedure.

Table 18–5 Parameters for the CREATE_JRAD_UI Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_devl_project_id in number The ID of the Model for which to create a UI.
See Example 18–1 on page 18-3 for a query that
provides this ID (DEVL_PROJECT_ID).

p_show_all_nodes in varchar2 'Controls whether the "display in UI" flag on
Model nodes is respected.

If this parameter is '1', then the new UI will
include all Model nodes including those
marked as "do not display in UI".

If this parameter is '0', then the new UI will
respect the "display in UI" flag on Model
nodes.

The default is ‘0’.

CREATE_JRAD_UI

18-14 Oracle Configurator Implementation Guide

p_master_template_id in number You can determine the IDs of UI master
Templates in the Repository of Oracle
Configurator Developer by customizing a
View so that it displays the column
DatabaseId. See the Oracle Configurator
Developer User’s Guide for details on
customizing Views.

p_create_empty_ui in varchar2 If this parameter is '1', then the new UI will be
an "empty" UI. See the Oracle Configurator
Developer User’s Guide for details on empty UIs.

x_ui_def_id out number The ID of the UI that is created. This is stored
as CZ_UI_DEFS.UI_DEF_ID.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR, FND_
API.G_RET_STS_SUCCESS, FND_API.G_
RET_STS_UNEXP_ERROR

x_msg_count out number The number of error messages returned in the
parameter.

x_msg_data out varchar2 A string that contains any error messages.

Table 18–5 (Cont.) Parameters for the CREATE_JRAD_UI Procedure

Parameter Mode Data Type Note

DEEP_MODEL_COPY

Programmatic Tools for Maintenance 18-15

DEEP_MODEL_COPY

The DEEP_MODEL_COPY procedure performs a deep copy of a specified Model.

Deep copying creates a new copy of the specified Model, along with new copies of any
referenced Models. You can choose to copy the Model without its configuration rules,
user interfaces, or referenced child Models.

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can perform a deep copy of a Model in
Oracle Configurator Developer, by using the Copy command in the Repository. See
the Oracle Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE deep_model_copy(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_folder IN NUMBER,
 p_copy_rules IN NUMBER,
 p_copy_uis IN NUMBER,
 p_copy_root IN NUMBER,
 x_devl_project_id OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–6 on page 18-15 describes the parameters for the DEEP_MODEL_COPY
procedure.

Table 18–6 Parameters for the DEEP_MODEL_COPY Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_devl_project_id in number The ID of the Model of which a copy is to be made.
See Example 18–1 on page 18-3 for a query that
provides this ID (DEVL_PROJECT_ID).

p_folder in number The folder to which the copy is made. See
Example 18–1 on page 18-3 for a query that provides
this number (ENCLOSING_FOLDER).

p_copy_rules in number Set to 1 to copy configuration rules with the model, 0
to omit the rules.

p_copy_uis in number Set to 1 to copy user interfaces with the model, 0 to
omit the user interfaces.

p_copy_root in number Set to 1 to copy only the root model, 0 to copy all
referenced models.

x_devl_project_id out number The ID (DEVL_PROJECT_ID) of the Model created
by the copying operation.

DEEP_MODEL_COPY

18-16 Oracle Configurator Implementation Guide

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

Table 18–6 (Cont.) Parameters for the DEEP_MODEL_COPY Procedure

Parameter Mode Data Type Note

EXECUTE_POPULATOR

Programmatic Tools for Maintenance 18-17

EXECUTE_POPULATOR

The EXECUTE_POPULATOR procedure can be used to refresh the CZ_PS_NODES
table by implementing a Populator.

A Populator is a mechanism that automatically builds Model structure from data in
the Item Master. See the Oracle Configurator Developer User’s Guide for more details on
Populators.

The CZ_PS_NODES table in the CZ schema describes the structure of the generated
logic.

See the description of REPOPULATE on page 18-30 for information on the related
procedure for repopulating Model structure.

Considerations Before Running
Before running the EXECUTE_POPULATOR procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, you can define and run a Populator using
Oracle Configurator Developer. See the Oracle Configurator Developer User’s Guide for
instructions on using Populators.

Another alternative to using this procedure is to run the Execute Populators in Model
concurrent program. See Section C.6, "Execute Populators in Model Concurrent
Program" on page C-20 for details on running this concurrent program.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE execute_populator(p_api_version IN NUMBER,
 p_populator_id IN NUMBER,
 p_imp_run_id IN OUT NOCOPY VARCHAR2,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–7 on page 18-17 describes the parameters for the EXECUTE_POPULATOR
procedure.

Table 18–7 Parameters for the EXECUTE_POPULATOR Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_populator_id in number The value of CZ_POPULATORS.POPULATOR_ID for
the Populator to be used.

p_imp_run_id in/out varchar2 Stored in CZ_IMP_PS_NODES.RUN_ID.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

FORCE_UNLOCK_MODEL

18-18 Oracle Configurator Implementation Guide

FORCE_UNLOCK_MODEL

The FORCE_UNLOCK_MODEL procedure unlocks one or more Models according to
user-defined criteria.

Model locking provides a mechanism that protects multiple users from modifying the
same Model at the same time. The FORCE_UNLOCK_MODEL procedure only works
when it is run as the user who has access to the force unlock functionality. See the
Oracle Configurator Developer User’s Guide for more information on Model locking.

Considerations Before Running
Before running the FORCE_UNLOCK_MODEL procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, theOracle Configurator Administrator can
unlock any object that is locked by another user. See the Oracle Configurator Developer
User’s Guide for more information on force unlocking.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE force_unlock_model(p_api_version IN NUMBER,
 p_model_id IN NUMBER,
 p_unlock_references IN VARCHAR2,
 p_init_msg_list IN VARCHAR2,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2);

Table 18–8 on page 18-18 describes the parameters for the FORCE_UNLOCK_MODEL
procedure.

Table 18–8 Parameters for the FORCE_UNLOCK_MODEL Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_model_id in number Required. The value of CZ_DEVL_
PROJECTS.MODEL_ID for the Model to be unlocked.

p_unlock_
references

in varchar2 Controls whether to unlock just the Model or to unlock
the Model and the entire tree of referenced Models.

The values are FND_API.G_TRUE or FND_API.G_
FALSE

If this parameter is FND_API.G_FALSE, then the just
the Model is unlocked.

The default is FND_API.G_FALSE.

p_init_msg_list in varchar2 Either FND_API.G_TRUE if the FND stack should be
initialized, or FND_API.G_FALSE if the FND stack
should not be initialized.

FORCE_UNLOCK_MODEL

Programmatic Tools for Maintenance 18-19

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR, FND_API.G_
RET_STS_SUCCESS, FND_API.G_RET_STS_UNEXP_
ERROR.

x_msg_count out number The number of error messages that are available on the
FND error stack after the completion of the procedure.

x_msg_data out varchar2 A string that contains any error messages.

Table 18–8 (Cont.) Parameters for the FORCE_UNLOCK_MODEL Procedure

Parameter Mode Data Type Note

FORCE_UNLOCK_TEMPLATE

18-20 Oracle Configurator Implementation Guide

FORCE_UNLOCK_TEMPLATE

The FORCE_UNLOCK_TEMPLATE procedure unlocks a UI Content Template.

Locking UI Content Templates provides a mechanism that protects multiple users
from modifying the same UI Content Template at the same time. The FORCE_
UNLOCK_TEMPLATE API only works when it is run as the user who has access to
the force unlock functionality. See the Oracle Configurator Developer User’s Guide for
more information on UI Content Template locking.

Considerations Before Running
Before running the FORCE_UNLOCK_TEMPLATE procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, the Oracle Configurator Administrator can
unlock any object that is locked by another user. See the Oracle Configurator Developer
User’s Guide for more information on force unlocking.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE force_unlock_template(p_api_version IN NUMBER,
 p_template_id IN NUMBER,
 p_init_msg_list IN VARCHAR2,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2);

Table 18–9 on page 18-20 describes the parameters for the FORCE_UNLOCK_
TEMPLATE procedure.

Table 18–9 Parameters for the FORCE_UNLOCK_TEMPLATE Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_template_id in number Required. The value of CZ_UI_
TEMPLATES.TEMPLATE_ID for the UI Content
Template to be unlocked.

p_init_msg_list in varchar2 Either FND_API.G_TRUE if the FND stack should be
initialized, or FND_API.G_FALSE if the FND stack
should not be initialized.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR, FND_API.G_
RET_STS_SUCCESS, FND_API.G_RET_STS_UNEXP_
ERROR.

x_msg_count out number The number of error messages that are available on the
FND error stack after the completion of the procedure.

x_msg_data out varchar2 A string that contains any error messages.

GENERATE_LOGIC

Programmatic Tools for Maintenance 18-21

GENERATE_LOGIC

The GENERATE_LOGIC procedure generates the logic for a Model and all of its
referenced Models if necessary.

Considerations Before Running
Before running the GENERATE_LOGIC procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, you can generate logic in Oracle
Configurator Developer, in the General area of the Workbench. See the Oracle
Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE generate_logic(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–10 on page 18-21 describes the parameters for the GENERATE_LOGIC
procedure.

Example
When called in SQL*Plus, this example generates logic for a model with the ID
(DEVL_PROJECT_ID) specified by the p_devl_project_id parameter. After the
procedure runs, it prints the run ID and status.

Example 18–6 Using the GENERATE_LOGIC Procedure

set serveroutput on
declare
x_run_id number;
x_status varchar2(100);
begin
CZ_modelOperations_pub.generate_logic(1.0,12345,x_run_id,x_status);

Table 18–10 Parameters for the GENERATE_LOGIC Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_devl_project_id in number The ID of the Model for which to generate logic. See
Example 18–1 on page 18-3 for a query that provides
this ID (DEVL_PROJECT_ID).

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR, G_STATUS_WARNING,
or G_STATUS_SUCCESS.

GENERATE_LOGIC

18-22 Oracle Configurator Implementation Guide

dbms_output.put_line('Run id: '||x_run_id);
dbms_output.put_line('x_status: '||x_status);
end;

IMPORT_SINGLE_BILL

Programmatic Tools for Maintenance 18-23

IMPORT_SINGLE_BILL

The IMPORT_SINGLE_BILL procedure can be used to import a model from Oracle
Bills of Materials (BOM).

See also:

■ "IMPORT_GENERIC" on page 18-24

Considerations Before Running
Before running the IMPORT_SINGLE_BILL procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, you can run the Populate Configuration
Models concurrent program. See Section C.4, "Populate and Refresh Configuration
Models Concurrent Programs" on page C-11 program for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE import_single_bill(p_api_version IN NUMBER,
 p_org_id IN NUMBER,
 p_top_inv_item_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–11 on page 18-23 describes the parameters for the IMPORT_SINGLE_BILL
procedure.

Table 18–11 Parameters for the IMPORT_SINGLE_BILL Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_org_id in number Required. The organization ID of the bill to be
imported.

p_top_inv_item_id in number The Inventory Item ID of the top item to be
imported (the BOM root).

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_
SUCCESS.

IMPORT_GENERIC

18-24 Oracle Configurator Implementation Guide

IMPORT_GENERIC

The IMPORT_GENERIC procedure processes and imports data from the CZ interface
tables as part of a custom import. See Section 5.4, "Custom Import" on page 5-21 for
details about custom (generic) import.

See also:

■ "IMPORT_SINGLE_BILL" on page 18-23

Considerations Before Running
Before running the IMPORT_GENERIC procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, you can run the Populate Configuration
Models concurrent program. See Section C.4, "Populate and Refresh Configuration
Models Concurrent Programs" on page C-11 program for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE import_generic(p_api_version IN NUMBER
 ,p_run_id IN NUMBER
 ,p_rp_folder_id IN NUMBER
 ,x_run_id OUT NOCOPY NUMBER
 ,x_status OUT NOCOPY NUMBER);

Table 18–4 on page 18-11 describes the parameters for the IMPORT_GENERIC
procedure.

Table 18–12 Parameters for the IMPORT_GENERIC Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_run_id in number Required. The Run ID generated by previously
populating the import (CZ_IMP_*) tables.
Specify the ID of the records that you want to
process during a particular generic import
session. If this ID is NULL, then all the records
in the import tables where run_id is NULL will
be processed. You should obtain the Run ID
from the sequence CZ_XFR_RUN_INFOS_S, to
avoid possible conflicts with the IMPORT_
SINGLE_BILL procedure.

p_rp_folder_id in number Required. The ID of the folder in the
Repository into which you want to import the
Model. To determine the ID of a folder, see
Section 18.3.1, "Querying for Model and Folder
IDs" on page 18-2. To specify the root folder of
the Repository, use the constant RP_ROOT_
FOLDER.

IMPORT_GENERIC

Programmatic Tools for Maintenance 18-25

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If
there are no warnings or errors, then 0 is
stored.

Used to get results from CZ_XFR_RUN_INFOS
and CZ_XFR_RUN_RESULTS.

x_status out number Either G_STATUS_ERROR, G_STATUS_
SUCCESS, or G_STATUS_WARNING.

Table 18–12 (Cont.) Parameters for the IMPORT_GENERIC Procedure

Parameter Mode Data Type Note

PUBLISH_MODEL

18-26 Oracle Configurator Implementation Guide

PUBLISH_MODEL

After a publication record is created through Oracle Configurator Developer, the
PUBLISH_MODEL procedure will export the models and UIs associated with the
publication.

Considerations Before Running
Before running the PUBLISH_MODEL procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Restrictions and Limitations
This procedure should only be run on publications with a status of Pending.

Alternatives
As an alternative to using this procedure, you can publish models in Oracle
Configurator Developer in the Publications area of the Repository. See the Oracle
Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE publish_model(p_api_version IN NUMBER,
 p_publication_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–13 on page 18-26 describes the parameters for the PUBLISH_MODEL
procedure.

Table 18–13 Parameters for the PUBLISH_MODEL Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_publication_id in number The publication ID generated when you publish a
model in Oracle Configurator Developer, stored as
CZ_MODEL_PUBLICATIONS.PUBLICATION_ID.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

REFRESH_SINGLE_MODEL

Programmatic Tools for Maintenance 18-27

REFRESH_SINGLE_MODEL

The REFRESH_SINGLE_MODEL procedure can be used to refresh a model imported
from Oracle Bills of Materials (BOM).

Considerations Before Running
Before running the REFRESH_SINGLE_MODEL procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE refresh_single_model(p_api_version IN NUMBER,
 p_devl_project_id IN VARCHAR2,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–14 on page 18-27 describes the parameters for the REFRESH_SINGLE_
MODEL procedure.

Table 18–14 Parameters for the REFRESH_SINGLE_MODEL Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_devl_project_id in varchar2 Required. The ID of the Model for which to refresh
imported data. See Example 18–1 on page 18-3 for a
query that provides this ID (DEVL_PROJECT_ID).

x_run_id out number The ID of the running of this procedure. This value
is stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_
SUCCESS.

REFRESH_UI

18-28 Oracle Configurator Implementation Guide

REFRESH_UI

The REFRESH_UI procedure refreshes an existing user interface based on the current
model data. This procedure operates only on legacy Configurator User Interfaces
(DHTML or Java applet) of the type generated with the limited edition of Oracle
Configurator Developer.

See also:

■ "CREATE_UI" on page 18-11

■ "REFRESH_JRAD_UI" on page 18-29

Considerations Before Running
Before running the REFRESH_UI procedure, you must first run fnd_global.APPS_
INITIALIZE procedure. This procedure sets up global variables and profile values in
a database session. Call this procedure to initialize the global security context for a
database session.

Restrictions and Limitations
This procedure only refreshes the UI specified. Referenced user interfaces are not
refreshed if the specified UI is DHTML. If the referenced UI is one that is based on the
OA Framework, then referenced user interfaces are refreshed.

Alternatives
As an alternative to using this procedure, you can refresh a UI in the limited edition of
Oracle Configurator Developer. See the About Oracle Configurator documentation for
details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE (p_api_version IN NUMBER,
 p_ui_def_id IN OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–15 on page 18-28 describes the parameters for the REFRESH_UI procedure.

Table 18–15 Parameters for the REFRESH_UI Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_ui_def_id in/out number UI definition ID of user interface to be refreshed. If user
interface is Applet style, then a new ui_def_id is returned
through this parameter. If the style is DHTML, then the
same ui_def_id is returned.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR, G_STATUS_WARNING or
G_STATUS_SUCCESS.

REFRESH_JRAD_UI

Programmatic Tools for Maintenance 18-29

REFRESH_JRAD_UI

The REFRESH_JRAD_UI procedure refreshes an existing user interface based on the
current Model data. This procedure generates only User Interfaces based on the OA
Framework. For more information on the OA Framework, see the Oracle Applications
Framework Release 11i Documentation Road Map (Metalink Note # 275880.1).

See also:

■ "CREATE_JRAD_UI" on page 18-13

■ "REFRESH_UI" on page 18-28

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can refresh a UI in Oracle Configurator
Developer, in the User Interface area of the Workbench. See the Oracle Configurator
Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE refresh_jrad_ui(p_api_version IN NUMBER,
 p_ui_def_id IN OUT NOCOPY NUMBER,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 OUT NOCOPY VARCHAR2);

Table 18–16 on page 18-29 describes the parameters for the REFRESH_JRAD_UI
procedure.

Table 18–16 Parameters for the REFRESH_JRAD_UI Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

p_ui_def_id in/out number Identifies the UI to refresh

x_return_status out varchar2 Either G_STATUS_ERROR, G_STATUS_
SUCCESS, or G_STATUS_WARNING.

x_msg_count out number The number of error messages returned in the
parameter.

x_msg_data out varchar2 A string that contains any error messages.

REPOPULATE

18-30 Oracle Configurator Implementation Guide

REPOPULATE

The REPOPULATE procedure iterates through all Populators associated with the input
model and repopulates them.

Considerations Before Running
Before running the REPOPULATE procedure, you must first run fnd_global.APPS_
INITIALIZE procedure. This procedure sets up global variables and profile values in
a database session. Call this procedure to initialize the global security context for a
database session.

Alternatives
As an alternative to using this procedure, you can repopulate the Model with current
data when data in the Item Master changes in Oracle Configurator Developer. See the
Oracle Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE repopulate(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_regenerate_all IN VARCHAR2 , -- DEFAULT '1',
 p_handle_invalid IN VARCHAR2 , -- DEFAULT '1',
 p_handle_broken IN VARCHAR2 , -- DEFAULT '1',
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

Table 18–17 on page 18-30 describes the parameters for the REPOPULATE procedure.

Table 18–17 Parameters for the REPOPULATE Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_devl_project_id in number The ID of the Model to repopulate. See
Example 18–1 on page 18-3 for a query that
provides this ID (DEVL_PROJECT_ID).

p_regenerate_all in varchar2 Set to 0 if all Populators should be regenerated
unconditionally before execution. Set to 1 to
regenerate only modified Populators. The default
is 1.

p_handle_invalid in varchar2 Allows caller to specify how to handle invalid
Populators. Pass 0 to skip invalid Populators, or
pass 1 to regenerate them. The default is 1.

p_handle_broken in varchar2 Allows caller to specify whether to continue (1) or
not (0) when a Populator cannot be regenerated
successfully. The default is 1.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If there
are no warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR or G_STATUS_
SUCCESS.

REPUBLISH_MODEL

Programmatic Tools for Maintenance 18-31

REPUBLISH_MODEL

The REPUBLISH_MODEL procedure is the server side API to create a publication
request and republish the model.

Only valid publications can be republished. A valid publication’s DELETED_FLAG=0,
STATUS=OK, and SOURCE_TARGET_FLAG=S.

Possible reasons for the REPUBLISH_MODEL procedure to fail, are:

■ Input dates were not valid for the p_publication_id

■ There is an overlap with existing publications for the same Model

■ The Model was regenerated and the UI was refreshed

If the validation fails for any reason, the error messages are logged in CZ_DB_LOGS.

Considerations Before Running
Before running the REPUBLISH_MODEL procedure, you must first run fnd_
global.APPS_INITIALIZE procedure. This procedure sets up global variables and
profile values in a database session. Call this procedure to initialize the global security
context for a database session.

Alternatives
As an alternative to using this procedure, you can republish an existing model in
Oracle Configurator Developer in the Publications area of the Repository. See the
Oracle Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this procedure is:

PROCEDURE republish_model(p_api_version IN NUMBER,
 p_publication_id IN NUMBER,
 p_start_date IN DATE,
 p_end_date IN DATE,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

 Table 18–18 on page 18-31 describes the parameters for the REPUBLISH_MODEL
procedure.

Table 18–18 Parameters for the REPUBLISH_MODEL Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on page 18-6.

p_publication_id in number Required. This is the ID of the publication that is
being republished.

p_start_datel in date This is the start date of the original publication.

p_end_date in date This is the end date of the original publication.

p_handle_broken in varchar2 Allows caller to specify whether to continue (1) or
not (0) when a Populator cannot be regenerated
successfully. The default is 1.

REPUBLISH_MODEL

18-32 Oracle Configurator Implementation Guide

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If there
are no warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR, G_STATUS_SUCCESS,
or G_STATUS_WARNING.

Table 18–18 (Cont.) Parameters for the REPUBLISH_MODEL Procedure

Parameter Mode Data Type Note

RP_FOLDER_EXISTS

Programmatic Tools for Maintenance 18-33

RP_FOLDER_EXISTS

The RP_FOLDER_EXISTS function checks whether a specified folder already exists in
the Repository of Oracle Configurator Developer. You can use this function before you
use CREATE_RP_FOLDER, to avoid trying to create a folder with a conflicting name.

This function returns the values listed in Table 18–19, " Values Returned by RP_
FOLDER_EXISTS" on page 18-33, given the conditions shown.

See also:

■ "CREATE_RP_FOLDER" on page 18-9

Considerations Before Running

Alternatives
As an alternative to using this procedure, you can search for the target folder in Oracle
Configurator Developer, by expanding some or all folders in the Repository. See the
Oracle Configurator Developer User’s Guide for details.

Syntax and Parameters
The syntax for this function is:

FUNCTION rp_folder_exists (p_api_version IN NUMBER
 ,p_encl_folder_id IN NUMBER
 ,p_rp_folder_id IN NUMBER) RETURN BOOLEAN;

Table 18–20 on page 18-33 describes the parameters for the RP_FOLDER_EXISTS
function.

Table 18–19 Values Returned by RP_FOLDER_EXISTS

Enclosing folder
(p_encl_folder_id)

Target folder
(p_rp_folder) Function Returns ...

Null Exists anywhere in the Repository TRUE

Not null and exists anywhere in
the Repository

Exists inside enclosing folder. TRUE

Null Does not exist anywhere in the
Repository

FALSE

Not null and does not exist
anywhere in the Repository

N/A FALSE

Not null Does not exist inside enclosing
folder.

FALSE

Table 18–20 Parameters for the RP_FOLDER_EXISTS Function

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers on
page 18-6.

RP_FOLDER_EXISTS

18-34 Oracle Configurator Implementation Guide

p_encl_folder_id in number Required. The ID of the enclosing (parent)
folder containing the target folder name. To
determine the ID of a folder, see Section 18.3.1,
"Querying for Model and Folder IDs" on
page 18-2. To specify the root folder of the
Repository, use the constant RP_ROOT_
FOLDER.

p_rp_folder_id in number Required. The ID of the folder that is the target
of your search. To determine the ID of a folder,
see Section 18.3.1, "Querying for Model and
Folder IDs" on page 18-2.

Table 18–20 (Cont.) Parameters for the RP_FOLDER_EXISTS Function

Parameter Mode Data Type Note

Part V
Runtime Configurator

Part V presents information for deploying a runtime Oracle Configurator that is
embedded in a host Oracle Application or a custom host application as described in
Section 1.5, "Deployment Tasks" on page 1-6. Part V contains the following chapters:

■ Chapter 19, "User Interface Deployment"

■ Chapter 20, "Deployment Considerations"

■ Chapter 21, "Managing Configurations"

User Interface Deployment 19-1

19
User Interface Deployment

Deployment involves making a runtime Oracle Configurator available to end users.
This chapter describes the types of User Interfaces that may be deployed in a runtime
Oracle Configurator.

Oracle Configurator can be deployed in these scenarios:

■ Embedded in a host Oracle Application such as Order Management, using either a
User Interface generated in Configurator Developer or the Generic Configurator
User Interface.

■ Embedded in a host application outside of Oracle Applications using a User
Interface generated in Configurator Developer.

■ Embedded in a host application outside of Oracle Applications using an entirely
custom-written user interface that accesses the Configuration Interface Object
(CIO). This scenario is not described directly in any Oracle Configurator
documentation.

The CIO and its basic usage is described in the Oracle Configurator Extensions and
Interface Object Developer’s Guide.

19.1 Calling an Embedded Oracle Configurator
Oracle Applications uses an internet server, such as Oracle Internet Application Server
(iAS), to run the Oracle Configurator (OC) Servlet. The OC Servlet connects the
runtime Oracle Configurator’s URL to the CZ schema. The Oracle Configurator’s URL
is set by the profile option BOM: Configurator URL of UI Manager.

See the Oracle Configurator Installation Guide for information about installing the OC
Servlet and configuring the internet server.

An Oracle Configurator embedded in Oracle Applications uses one of the following
user interfaces:

■ A simple, non-customized UI that shows only BOM items.

For details, see Section 19.1.1, "Generic Configurator User Interfaces" on page 19-2.

■ A customized HTML UI that is generated and optionally customized in
Configurator Developer.

For more information, see the Oracle Configurator Developer User’s Guide.

For information about activities required to complete deployment of a runtime Oracle
Configurator embedded in a host Oracle Application such as Order Management or
iStore, see Chapter 20, "Deployment Considerations".

Calling an Embedded Oracle Configurator

19-2 Oracle Configurator Implementation Guide

See Section 3.1, "Database Uses" on page 3-1 for an overview of possible deployment
environments and architecture.

19.1.1 Generic Configurator User Interfaces
A Generic Configurator User Interface can be accessed by host applications that are
part of the Oracle E-Business Suite to configure a BOM Model. Examples of Oracle
E-Business Suite host applications include Order Management, Bills of Material,
Quoting, and iStore.

Generic Configurator UIs are not User Interfaces that are created in Oracle
Configurator Developer. These UIs display only BOM Model items and enforce only
implicit BOM rules. In other words, any Model structure nodes, rules, or UI elements
that are defined in Configurator Developer are not available in a Generic Configurator
UI. This is because Generic Configurator UIs access BOM Model data directly from the
Oracle Bills of Material database tables, not from the CZ schema.

Deploying a configuration model that is based on a BOM Model and uses rules
defined in Configurator Developer typically involves creating a UI in Configurator
Developer and then publishing both the configuration model and the UI. For details,
see the Oracle Configurator Developer User’s Guide.

You may want your end users to use a Generic Configurator UI to configure a BOM
Model item if:

■ Your end users do not need a UI that provides unique selection controls,
company-specific logos, custom images, and so on (for example, internal order
entry employees or sales representatives).

■ The BOM Model does not require additional structure or rules to support guided
buying or selling questions (that is, structure and rules defined in Configurator
Developer).

19.1.1.1 Criteria for Launching a Generic Configurator User Interface
A Generic Configurator UI is used when an Oracle E-Business Suite host application
sends a request to configure:

■ A BOM Model item that has not been imported into Configurator Developer.

■ A BOM Model item that has been imported into Configurator Developer, but has
not been published.

■ A BOM Model item for which no matching publication is found.

19.1.1.2 Generic Configurator UI Types
The available types of Generic Configurator UIs are the HTML Hierarchical Table UI
and the Java Applet UI. The HTML Hierarchical Table UI appears in a Web browser, is
based on the Oracle Applications Framework, and is available from both Oracle
Forms-based and HTML-based host applications. This UI appears when the profile
option CZ: Generic Configurator UI Type is set to HTML Hierarchical Table and
the item being configured meets the criteria described in Section 19.1.1.1 on page 19-2.
In this UI, the BOM Model is presented in a hierarchical table and controls are

Note: If the host application sends a request to configure a Model
that was created in Configurator Developer and no matching
publication is found, Oracle Configurator displays an error.

Calling an Embedded Oracle Configurator

User Interface Deployment 19-3

provided to expand and collapse configurable items, select options, and enter a
quantity for each option.

The Java Applet UI does not run in a Web browser and it is available only from
Forms-based host applications, such as Oracle Order Management. The Java Applet UI
appears when all of the following are true:

■ The host application is Forms-based

■ The profile option CZ: Generic Configurator UI Type is set to Java Applet (see
Section 19.1.1.3, "Setting Up a Generic Configurator User Interface" on page 19-3)

■ The item being configured meets the criteria described in Section 19.1.1.1 on
page 19-2

The Java Applet UI contains three regions. The region on the left displays the BOM
Model’s hierarchical structure and enables the end user to navigate to each
configurable component. End users use the region at the top of the screen to select
options. The region at the bottom of the screen displays a summary of all selected
options and the status of the configuration.

For more information about Forms-based applications, see the Oracle Applications
User’s Guide.

19.1.1.3 Setting Up a Generic Configurator User Interface
The following profile options modify the behavior and appearance of the HTML
Hierarchical Table UI:

■ CZ: BOM Tree Expansion State

■ CZ: Generic Configurator UI Max Child Rows

■ CZ: Hide Focus in Generic Configurator UI

By default, Forms-based host applications such as Oracle Order Management use the
Java Applet UI to configure items that meet the criteria described in Section 19.1.1.1 on
page 19-2. For details about the Java Applet UI, see Section 19.1.1.2, "Generic
Configurator UI Types" on page 19-2.

BOM Models can contain Items that support decimal quantities and some Items may
have a default quantity that is a decimal value. To configure such a BOM Model using
the Generic Configurator UI, the profile option CZ: Populate Decimal Quantity Flags
must be set to Yes. For UIs created in Configurator Developer, this profile option
determines whether the BOM Model supports decimal quantities when it is imported
into the CZ schema, not when the UI is launched from a host application.

If your host application is either Oracle iStore and Oracle Quoting, verify that the
profile option CZ: Use Generic Configurator UI is set correctly for your installation.

For more information about any of the profile options referred to in this section, see
the Oracle Configurator Installation Guide.

19.1.1.4 Generic Configurator User Interfaces: Additional Features and Limitations
The Generic Configurator User Interfaces:

■ Can display pricing and Available To Promise (ATP) information (if implemented).

To set up pricing and ATP, see Chapter 13, "Pricing and ATP in Oracle
Configurator".

■ Enable end users to search for items based on the item name or description

Calling an Embedded Oracle Configurator

19-4 Oracle Configurator Implementation Guide

■ Identify unsatisfied items and items that are required to create a valid
configuration

■ Provide multiple languages support (MLS)

■ Support secure sockets layer (SSL)

■ Display currency in the same format as the host application

The Generic Configurator User Interfaces do not support:

■ Multiple instantiation (creating multiple instances of configurable components)

■ Connectivity (connecting configurable components)

In other words, an Oracle Configurator end user can connect and create multiple
instances of configurable components only in User Interfaces that are created in
Configurator Developer.

For more information about multiple instantiation and Connectivity, see the Oracle
Configurator Developer User’s Guide.

19.1.2 Keyboard Access in the Runtime Configurator
Oracle Configurator Developer enables end users with disabilities to navigate the
runtime Configurator window using only the keyboard. For information on the
available keystrokes and the corresponding actions at runtime, see the Oracle
Configurator Developer User’s Guide.

Deployment Considerations 20-1

20
Deployment Considerations

This chapter and Chapter 19, "User Interface Deployment" on page 19-1 describe
activities required to complete deployment of a runtime Oracle Configurator
embedded in a host Oracle Application such as Order Management or iStore. The
activities include:

■ Deployment Strategies

■ Architectural Considerations

■ Server Considerations

■ Establishing End User Access

■ Determining the Runtime User Interface

■ Load Balancing and Secure Sockets Layer

■ Network Considerations

■ Security Considerations

■ Multiple Language Support Considerations

■ Performance Considerations

Additionally, see Section 3.1, "Database Uses" on page 3-1 for an overview of possible
deployment environments and architecture.

20.1 Deployment Strategies
No single factor is likely to make your deployment succeed. A successful deployment
depends on the relationship and interaction of several critical factors that are
mentioned in this chapter.

This chapter describes the principles that affect a typical Oracle Configurator
deployment.

20.2 Architectural Considerations
The architecture of an application often limits its operation. An inefficient
configuration model design cannot overcome the limitation by simply tuning your
server software of augmenting your hardware.

Model loading and data access depend on how the application was implemented. To
get the information required to start tuning your servlet requires you to understand
the application. You need to take the time to plan a model of what steps end users will
experience and what variety of options will be presented, such as:

Server Considerations

20-2 Oracle Configurator Implementation Guide

■ What users select page by page

■ How users navigate from page to page

■ What interruptions can occur during a configuration session (for example, when a
user pauses a long time to consider their choices, or turns to another task before
returning to make a selection)

20.3 Server Considerations
A critical factor in deploying Oracle Configurator on your internet server is the
number of instances of the servlet engine (Apache JServ) that you deploy. This number
is based on the number of end users that you expect to be conducting simultaneous
configuration sessions in each instance, and the kind of data access that they are going
to experience.

You need to consider these factors in determining the load balance of users per JServ:

■ Network data access calls made by your application

■ The length of time that a user requires to work through the application

■ The number of times a user can work through the application in an hour

■ How many of this type of user can use your application at the same time without
interfering with other users needing to access the database (for instance, to save a
configuration)

Consequently, the architecture of your application affects your ability to balance the
load on your server, which determines the server resources that your application
requires.

The factors that affect the number of users per JServ include:

■ The size of the application (the number of pages or screens)

■ The size of the Model (the number of nodes)

■ The number or complexity of any Configurator Extensions used by the application

■ The number of CPUs

■ The memory per CPU

The JDK uses about 16 megabytes. The JVM for each JServ uses about 45
megabytes. Oracle Configurator uses native threads.

■ The number of JServ instances running

■ The number of connections available in the connection pool (see Section 20.3.1,
"Connection Pooling" on page 20-3)

Example
Consider a hypothetical deployment that includes:

■ 6 CPUs

■ 2 JServ instances per CPU

■ 20 end users expected per JServ

This deployment can support 240 simultaneous user configuration sessions:

6 CPUs x 2 JServs per CPU x 20 users per JServ = 240 users

Determining the Runtime User Interface

Deployment Considerations 20-3

Due to the nature of the application, and the kind of data access that occurs in the
application, you should consider what kind of peak events might occur when several
users perform a "save" operation in the same minute.

If there are not enough database connections in the connection pool when many users
save their configuration at the same time, those users will experience an unacceptable
wait until enough connections are freed.

For more information, see the Oracle Configurator Performance Guide.

20.3.1 Connection Pooling
Connection pooling allows multiple configuration sessions in a JServ instance to make
database connections. (Previous versions of Oracle Configurator were only able to use
a single database connection for each JServ instance.)

When a configuration session is started by the posting of the initialization message to
the OC Servlet, a connection is obtained from the pool. When the session is over, the
connection is returned to the pool. Each connection requires memory.

Oracle Configurator uses AOL/J (Java classes for AOL (Applications Object Library))
to provide connection pooling. To modify the default setting for connection pooling,
you use the AdminAppServer class to create or update a DBC file, setting a value for
the parameter FND_MAX_JDBC_CONNECTIONS.

The parameter FND_MAX_JDBC_CONNECTIONS specifies the maximum number of
open connections in the JDBC connection cache. This number is dependent on the
amount of memory available, the number of processes specified in the init.ora file
of the database, and the per-processor file descriptor limit.

The maximum pool size is the maximum allowed sum of the number of available
connections and the number of locked connections. If the .dbc file does not have a
setting for maximum pool size, the default value is used. The default value is the Java
static field Integer.MAX, which normally has a value of about 2 billion. Therefore, the
default value is essentially unlimited.

The parameter FND_JDBC_MAX_WAIT_TIME specifies the length of time a request
waits for a connection to be established. The default value is 10 seconds, and this
parameter is not configurable.

20.4 Establishing End User Access
End users ability to access the runtime Oracle Configurator are established by the
Oracle Applications System Administrator. For more information, see the Oracle
Applications System Administrator’s Guide. For more information about the behavior of
the runtime Oracle Configurator as it affects end users, see the Oracle Configurator
Developer User’s Guide.

Publication applicability parameters also affect end-user access to configuration
models. For example, the effective dates and times of the configuration model
publication must be valid for the time setting on the computer where the host
application is running. For more information about publication applicability
parameters, see Section 20.5, "Determining the Runtime User Interface", and the Oracle
Configurator Developer User’s Guide.

20.5 Determining the Runtime User Interface
The settings of a Model publication’s applicability parameters, the initialization
message sent by the host application, and the end user’s responsibility determine

Load Balancing and Secure Sockets Layer

20-4 Oracle Configurator Implementation Guide

which type of user interface is displayed in a runtime Oracle Configurator. For more
information, see Chapter 19, "User Interface Deployment".

For example, an end user is expecting to see a generated Configurator UI at runtime
but instead sees the Generic Configurator User Interface. This can happen when the
host application is not specified in the publication’s applicability parameters, or the
end user’s responsibility is not valid for the host application. For details about the
Generic Configurator UI, see Section 19.1.1 on page 19-2.

To determine what responsibilities are valid for an application, two queries can be run.
By querying the local database with the specified application short name, the
application ID can be retrieved and then used in a second query to determine what
responsibility IDs are valid for the specified application ID.

SELECT application_id, application_short_name, description
FROM FND_APPLICATION_Vl
WHERE application_short_name=’CSS’

APPLICATION_ID APPLICATION_SHORT_NAME DESCRIPTION
514 CSS Support

Using the returned APPLICATION_ID you can then run another query to determine
the responsibilities that are allowed for that application:

SELECT application_id, responsibility_id, responsibility_name, responsibility_key
FROM fnd_responsibility_VL
WHERE application_ID = ’514’

APPLICATION_ID RESPONSIBILITY_ID RESPONSIBILITY_NAME RESPONSIBILITY_KEY
 514 12345 Customer Support Test Oracle_Support
 514 67890 Customer Support USA Customer_Support

For information about legacy UIs, see the About Oracle Configurator documentation for
this release on Metalink, Oracle’s technical support Web site.

20.6 Load Balancing and Secure Sockets Layer
Oracle strongly recommends using Oracle Internet Application Server (iAS) version
1.0.2.2.2 or later. This version of iAS can be set up to use a process manager that
automatically load balances server processes and supports Secure Sockets Layer (SSL)
for greater security when transmitting data over the Internet.

Refer to Oracle Internet Application Server release 1.0.2.2.2 documentation. For
additional SSL information, see Metalink, Oracle’s technical support Web site.

If you are not using Oracle iAS version 1.0.2.2.2 or later, refer to the following Apache
Web sites for more information about load balancing and SSL:

http://java.apache.org/jserv/howto.load-balancing.html
http://www.apache-ssl.org

20.7 Network Considerations
There are a number of network issues that can cause serious problems for your
deployment if not handled correctly.

Network Considerations

Deployment Considerations 20-5

20.7.1 Firewalls and Timeouts
If your application requires more than one server system, then it is recommended that
there be separate servers for the Oracle database server and the internet server. If there
are firewalls between servers, then these firewalls must allow persistent database
connections between them. Persistent database connections are SQL links that do not
close when the execution of your script ends.

The OC Servlet is a stateful application. A stateful application keeps its critical data in
memory, rather than writing and reading it from disk storage. Oracle Configurator
keeps in memory critical data, such as the Properties cache and the state of the logic
engine, until a configuration is saved.

Stateful applications require a persistent connection between the database server port
and the ports used by the servlet engine (in this case, Apache JServ). The default
timeout for the JServ engine is 30 minutes.

See Section 20.8, "Security Considerations" on page 20-6 for firewall recommendations.

20.7.2 Router Timeouts
Routers have a setting referred to as "stickiness." Router stickiness connects the HTTP
request made by a particular client browser (that is, the browser displaying the
runtime Oracle Configurator as DHTML) with a particular instance of the servlet
engine (JServ).

The stickiness setting is a time limit on the total time allowed for the connection
between client and servlet engine. After the time limit is exceeded by the client
browser, the connection to the servlet engine instance is broken. If the end user
attempts to use the browser, then it is possible that the router may connect that
browser to a different, and wholly incorrect, servlet engine instance.

You must determine the appropriate length of time for your application. For instance,
if you feel that your users may wish to use your application for one hour, then you
must set the router stickiness to match that time.

See Section 20.8, "Security Considerations" on page 20-6 for router recommendations.

20.7.3 Miscellaneous Issues
■ Your application must run in an environment that resolves domain names to allow

it to communicate with other servers.

■ You must set up your router and server so that all users and processes have the
access privileges and permissions they need in order to carry out their functions.

Warning: If there is an idle time limit set on the TCP/IP database
connection across a firewall, then this limit can prevent Oracle
Configurator from operating.

Warning: If the "stickiness" time limit of your router is too small
for the correct use of your application, this limit can prevent Oracle
Configurator from operating.

Security Considerations

20-6 Oracle Configurator Implementation Guide

20.8 Security Considerations
If you are implementing Oracle Configurator outside your firewall, then consider the
following recommendations:

■ Protect your servers with a firewall.

■ Have an additional firewall between the application server and the database
server. This additional firewall can guard against unauthorized access to the
database server. It should be configured to open only designated ports for
application server access to the database.

Additional servers intended for internal use should also be behind this firewall.

■ Use hardware routers and front-door products like Oracle’s WebCache to provide
an additional level of security.

■ Use separate computers or clusters for the application server and the database
server. This is always recommended for performance reasons, but in the context of
security it also provides the benefit of preventing a denial-of service attack from
disabling the database server.

Some risks still remain in that a malicious user could gain access to the application
server. Oracle recommends the following:

■ Dedicate a computer or cluster to the public Web site’s application server. This will
minimize the functionality to which a malicious user would have access. This
server should not mount sensitive file systems and should be isolated from the
internal servers by a firewall.

■ Do not store database connection parameters (for example, .dbc files) that provide
extensive database access on the same application server that is used for public
Web site access. For more information on database connections, see Section 20.3,
"Server Considerations" on page 20-2 and Section 20.8.1, "Internet User Access" on
page 20-6.

■ Disable default database account and Oracle Applications users that ship with
Oracle products.

20.8.1 Internet User Access
There is no direct database connection from non-authenticated Internet users to your
production database because:

■ The database connection is established by the Configurator middle tier that is
running on the application server. The connection is not established by any
software running on the client’s computer.

■ Database connection parameters are secured on the application server using
AOL/J functionality based on Oracle Applications FND authentication. For more
information, see the About Oracle Application Object Library document on
Metalink.

■ Database connection information is not transmitted over the Internet. An
encrypted ICX session ticket that is valid just for a single application server session
is transmitted. For more information on an ICX session ticket see Chapter 2,
"Configurator Architecture", and the Oracle Configurator Extensions and Interface
Object Developer’s Guide.

■ Application server sessions for a public Web site logs into Oracle Applications
with an Oracle Applications user ID assigned for walk-in users. The walk-in user
is defined to have a valid Oracle Applications responsibility that provides access

Performance Considerations

Deployment Considerations 20-7

only to the necessary functions. The walk-in user will not have database login
privileges. For additional access, see Section 20.4, "Establishing End User Access"
on page 20-3.

20.8.2 Additional Security Precautions
The following security precautions may also be considered if your public Web site
does not require live access to production data such as entering orders or updating
account information:

■ Use a second Oracle Applications instance to host the implementation of the
runtime Oracle Configurator if the runtime Oracle Configurator does not require
data from any part of Oracle Applications other than the CZ schema.

■ Application server sessions for the public Web site connect to the runtime Oracle
Configurator database instance, not the production database instance. Database
access from the public application server to the production database instance is not
available.

■ Create and maintain configuration models in the production database instance,
and then publish the Models to the runtime Oracle Configurator database
instance. Any custom data that is needed for the public Web site would need to be
stored or duplicated on the runtime Oracle Configurator instance.

■ If there are any transactions that a consumer could start through the public Web
site, then you would have to implement a procedure to extract the transactional
data from the runtime Oracle Configurator database instance and import it to the
production database instance for processing. This extraction is not necessary if the
only output of the public Web site is information for the consumer.

■ If feedback on the state of transactions in the production database instance must
be provided to end users on the public Web site, then you have to implement a
procedure to extract this data from the production database instance and import it
into the runtime Oracle Configurator database instance. This data would only be
as current as of the most recent extraction.

20.9 Multiple Language Support Considerations
If you are implementing Multiple Language Support (MLS), see Chapter 14, "Multiple
Language Support".

20.10 Performance Considerations
For information about improving the performance of your runtime Oracle
Configurator, see the Oracle Configurator Performance Guide.

Performance Considerations

20-8 Oracle Configurator Implementation Guide

Managing Configurations 21-1

21
Managing Configurations

This chapter explains the data structures produced by Oracle Configurator during a
configuration session and how to manage the lifecycle of saved configurations. It
includes the following topics:

■ About Configurations

■ Configuration Identity

■ Host Applications and Oracle Configurator

■ Batch Validation of a Configured Item

■ Reconfiguring a Configured Item

■ Copying a Host Application’s Entity

■ Passing a Saved Configuration to Another Host Application

■ Deleting a Host Application Entity

For general information, see Chapter 2, "Configurator Architecture". For related
information about configuration models and rules, and about the behavior of the
runtime Oracle Configurator, see the Oracle Configurator Developer User’s Guide.

21.1 About Configurations
A configuration is the record of a configuration session. It is the output produced by
the runtime Oracle Configurator, as a product of processing an end-user’s selections,
which cause configuration rules to be applied against a configuration model. Oracle
Configurator validates the selections, resulting in a configuration.

Once a configuration has been saved during a configuration session, it is identified by
a configuration header ID, which is stored in the CZ schema as CZ_CONFIG_
HDRS.CONFIG_HDR_ID.

When a configurable item is successfully configured, the config_hdr_id and
config_rev_nbr that is returned in the XML termination message should be stored
in the application entity that is associated with the configured item. For example, in
Oracle Order Management, this is stored on the order line. In Oracle Order Capture, it
is stored on a quote line.

A configuration can be:

■ Valid or invalid

A valid configuration contains no contradictions to the rules, whereas an invalid
configuration contains contradictions.

■ Complete or incomplete

Configuration Identity

21-2 Oracle Configurator Implementation Guide

A complete configuration includes all the required selections. An incomplete
configuration lacks some required selections; in other words, some of the
configuration rules are unsatisfied.

■ New, saved, restored, or cancelled

A new configuration is one in which the user has not made any selections, and the
logic state of many elements is Unknown.

21.1.1 Saving a Configuration
At any time during a configuration session the configuration can be saved, thus
recording the selections made against the nodes of the Model structure, which are
called configuration inputs. A configuration does not have to be valid or complete in
order to be saved. You can save any configuration, even if it is invalid and incomplete.
The saved configuration should be stored in the host application entity even if its
status indicates that the configuration is invalid or incomplete.

If a configuration has been saved, then later it can be restored for further selections
and validation. When a configuration is restored, it is not the final saved state of the
Model that is restored, but only the configuration inputs to the Model. The restored
inputs are reasserted against the Model to produce a configuration. See Section 21.2,
"Configuration Identity" on page 21-2 for more information.

If the configuration model or rules have changed since the configuration was saved,
then validation failures may occur as a result of inputs that no longer match the
Model.

Because restoring a configuration reasserts all the configuration inputs to the Model,
restoring a configuration programmatically with the CIO is normally not faster than
restoring a configuration interactively, and under some circumstances can be slower.

A configuration can also be canceled during a configuration session, by terminating
the runtime Oracle Configurator without saving the configuration. In this case, the
configuration inputs are discarded.

21.2 Configuration Identity
Configurations commonly consist of a single instance of your configuration model and
a set of configuration inputs.

When a configuration is restored and changed, the changes are saved as a revision to
that configuration. Each saved revision is identified by a Configuration Revision
Number, which is stored as CZ_CONFIG_HDRS.CONFIG_REV_NBR. The
combination of Header ID and Revision Number identifies a unique configuration
record. The identity of each item in the configuration is recorded by a Configuration
Item ID (stored as CZ_CONFIG_ITEMS.CONFIG_ITEM_ID). For detailed information
about these and other tables, see the CZ schema on Metalink’s eTRM, Oracle’s
technical support Web site.

21.3 Host Applications and Oracle Configurator
Oracle Configurator does not provide a UI to manage saved configurations. Oracle
Configurator is an embedded component of other applications referred to as host
applications. It is the responsibility of the host application to manage saved
configurations. The host application has the following responsibilities in its
relationship with Oracle Configurator:

Batch Validation of a Configured Item

Managing Configurations 21-3

■ Maintain an index of configuration product keys that can be used to launch the
runtime Oracle Configurator UI or batch validation. The product key usually
consists of the Inventory Item ID followed by its Inventory Organization ID. For
example, 452:1534. The product key could also be any name that identifies a
configurable object in the host application’s domain.

■ Implement the runtime Oracle Configurator UI or batch validation by providing a
product key or the ID of a saved configuration. To launch a saved configuration
you must know the configuration’s header ID (config_header_id) and revision
number (config_rev_number). For more information about the configuration’s
identity, see Section 21.2, "Configuration Identity" on page 21-2.

■ Keep track of the saved configurations returned by the runtime Oracle
Configurator by storing the config_header_id and the config_rev_number
with an entity in the host application.

■ Delete saved configurations by using CZ_CF_API.DELETE_CONFIGURATION
when configurations are no longer associated with any host application entity.

21.4 Batch Validation of a Configured Item
Batch validation allows a host application to perform tasks such as:

■ Validating a BOM-based configuration in the background

■ Determining a configuration quantity

A host application calls batch validation through the CZ_CF_API.VALIDATE PL/SQL
procedure. For more information on batch validation, see Chapter 11, "Batch
Validation".

If batch validation is unsuccessful (CZ_CF_API.VALIDATE returns validation_
status>0), then the original config_hdr_id and config_rev_nbr, if any, should be
preserved in the host application’s entity.

If batch validation is successful (CZ_CF_API.VALIDATE returns validation_status=0),
then the host application must decide whether to store the returned config_hdr_id
and config_rev_nbr in the host application’s entity. Consider the following when
storing the returned config_hdr_id and config_rev_nbr:

■ If the validation is for an item that was not previously configured, then the
returned config_hdr_id and config_rev_nbr should always be stored,
because this is the original configuration of the item.

■ If the validated configuration is complete and valid, then the new config_hdr_id
and config_rev_nbr should be stored, replacing the previous values. The
previously saved configuration should be deleted by CZ_CF_API.DELETE_
CONFIGURATION.

■ If the validated configuration is incomplete or invalid, then there are two different
approaches that the host application may adopt. The host application may:

Note: Oracle Configurator creates saved configurations at the end of
an interactive or batch configuration session when the initialization
message includes instructions to do so and the session terminates
normally. For more information on the initialization message, see
Chapter 9, "Session Initialization".

Reconfiguring a Configured Item

21-4 Oracle Configurator Implementation Guide

■ Choose to present the validation messages to the user and roll back whatever
change in the configuration or status is being validated. In this case, the new
saved configuration that is returned by batch validation should be deleted
with CZ_CF_API.DELETE_CONFIGURATION. This is the approach that is
adopted by Oracle Order Management.

■ Choose to accept any changes to the configuration, replace the previously
saved configuration with the new configuration, present the validation
messages to the user and roll back any proposed change in status. In this case,
the previously saved configuration should be deleted with CZ_CF_
API.DELETE_CONFIGURATION.

The key requirement is that the host application must delete whichever saved
configuration that is not retained in the host application’s entity.

21.5 Reconfiguring a Configured Item
The host application’s action following the reconfiguration of a configured item
depends on the value of the termination message’s exit element.

■ If the exit value is save, then the termination message also contains new values
for config_hdr_id and config_rev_nbr. These new values should be stored
in the host application’s entity that is associated with the configured item. The
previously saved configuration should be deleted by calling CZ_CF_
API.DELETE_CONFIGURATION and passing the values of config_hdr_id and
config_rev_nbr that were previously stored with the host application’s entity.

This behavior is independent of whether the newly saved configuration is valid or
complete. The user chose to save the configuration knowing its status (valid or
complete), so it should be stored with the host application’s entity.

■ If the exit value is cancel, error, or processed, then the previously stored
values of config_hdr_id and config_rev_nbr should be retained in the host
application’s entity.

Note: This assumes that the reconfigured item replaces the previous
configuration on the same host application entity. If the
reconfiguration is performed in the process of creating a new copy or
revision of the entity, then the new values of config_hdr_id and
config_rev_nbr should be stored with the new copy or revision,
and the original values should remain associated with the original
entity.

In this case the previously saved configuration should not be deleted,
because it is accessible through the original host application entity.

Deleting a Host Application Entity

Managing Configurations 21-5

21.6 Copying a Host Application’s Entity
When a host application creates a copy of a configuration that holds a reference to a
saved configuration it should copy the saved configuration with CZ_CF_API.COPY_
CONFIGURATION. The new config_hdr_id and config_rev_nbr that are
returned from COPY_CONFIGURATION should be stored with the copy of the host
application entity. The original saved configuration should not be deleted.

This same logic applies when the host application creates a new revision of its
configuration that holds a reference to a saved configuration.

If the copied configuration must be revalidated at the time of copying, the best
approach is to use CZ_CF_API.VALIDATE to create the copied configuration. Pass the
parameter save_config_behavior=new_config in the initialization message, and store
the config_hdr_id and config_rev_nbr to identify the copied configuration.
The host application that uses this approach must be prepared to handle validation
failures that may occur during the copying of a configuration.

For more information on the initialization message, see Chapter 9, "Session
Initialization". For more information on the procedures and functions in CZ_CF_API,
see Chapter 17, "Programmatic Tools for Development".

21.7 Passing a Saved Configuration to Another Host Application
When a saved configuration is handed off from one host application to another as part
of the business flow, the saved configuration should be copied. See Copying a Host
Application’s Entity on page 21-5.

Assuming that the entity is still accessible in the original host application, the original
host application entity should retain its reference (config_hdr_id and config_
rev_nbr) to the original saved configuration. The corresponding entity in the second
host application should store a reference to the copied configuration. In this case, the
original saved configuration should not be deleted. An example of this flow is the
transition from Oracle Order Capture to Oracle Order Management when a quote is
submitted as an order.

21.8 Deleting a Host Application Entity
When a host application deletes, purges, or otherwise makes an entity inaccessible that
holds a reference to a saved configuration, the host application should delete the
configuration using CZ_CF_API.DELETE_CONFIGURATION.

Note: Changing the Instantiability settings for a Model or
Component node within a published Model may change the
number of instances that exist when an end user restores a saved
configuration. For example, decreasing the Initial Minimum in
Configurator Developer and then republishing the Model may
cause some instances of the component to be lost when the
configuration is restored. (In this case, Oracle Configurator displays
a message indicating that a validation failure occurred.) Similarly,
increasing the Initial Minimum value may create additional
instances in a restored configuration.

Deleting a Host Application Entity

21-6 Oracle Configurator Implementation Guide

Part VI
Appendices

Part VI contains the following appendices:

■ Appendix A, "Terminology"

■ Appendix B, "Common Tasks"

■ Appendix C, "Concurrent Programs"

■ Appendix D, "CZ Subschemas"

■ Appendix E, "Code Examples"

Terminology A-1

A
Terminology

This chapter presents terminology used in this book and not included in the Glossary
of Terms and Acronyms.

Table A–1 lists terms that are used throughout this book.

See the "Glossary" for additional terms.

Table A–1 Terminology Used in This Book

Term Description

concurrent manager A process manager that coordinates the concurrent processes
generated by users’ concurrent requests. An Oracle Applications
product group can have several concurrent managers.

concurrent process A task that can be scheduled and is run by a concurrent
manager. A concurrent process runs simultaneously with
interactive functions and other concurrent processes.

concurrent processing
facility

An Oracle Applications facility that runs time-consuming,
non-interactive tasks in the background.

concurrent request A user-initiated request issued to the concurrent processing
facility to submit a non-interactive task, such as running a
report.

ICX Inter-Cartridge Exchange

A-2 Oracle Configurator Implementation Guide

Common Tasks B-1

B
Common Tasks

This appendix describes common tasks of an Oracle Configurator implementation:

■ Running Configurator Concurrent Programs

■ Connecting to a Database Instance

■ Verifying CZ Schema Version

■ Server Administration

■ Viewing Status of Configurator Concurrent Programs Requests

■ Viewing Log Files

■ Checking BOM Model and Configuration Model Similarity

For details about specific Oracle Configurator concurrent programs, see Appendix C,
"Concurrent Programs".

B.1 Running Configurator Concurrent Programs
To run the Oracle Configurator concurrent programs you must be assigned the
appropriate Configurator responsibility for the specific program (either Oracle
Configurator Administrator or Oracle Configurator Developer). Oracle Configurator
concurrent programs are implemented through Oracle’s HTML-based applications.
For information about assigning responsibilities, see the Oracle Applications System
Administrator’s Guide.

The following procedure describes how to run a concurrent program generally. For
specifics, see the relevant sections in Appendix C, "Concurrent Programs".

1. Determine in which database instance you must run the concurrent program.

2. Log into Oracle Applications connecting to the appropriate database instance.

3. Select either the Oracle Configurator Administrator or Oracle Configurator
Developer responsibility, depending on which is required for the concurrent
program you intend to run.

4. Navigate to the concurrent program by clicking Concurrent Programs: Schedule

5. On the Schedule Request: Name page, enter the full or partial concurrent
program name or the "%" (the percent sign) wild card and click the search icon.

6. Select the concurrent program and click Next.

7. If relevant for the concurrent program you have selected:

Connecting to a Database Instance

B-2 Oracle Configurator Implementation Guide

a. Enter or select the input parameters from a list of values in the Schedule
Request: Parameters page. You can query valid values by entering the %
wildcard.

b. Click Next.

The parameters for each concurrent program are listed and described in
Appendix C, "Concurrent Programs".

8. In the Schedule Request: Schedule page, specify the scheduling parameters when
you want your concurrent program request to run and click Next.

9. In the Schedule Request: Notifications page, enter the names of those users to
notify when the request finishes processing. Use the Normal, Warning, and Error
check boxes to specify the conditions for notification.

10. Click Next.

11. In the Schedule Request: Printing page, select the Print Style: Landscape or
Portrait, the Printer, and enter the number of Copies. To save the output to a file,
select the Save Output Files check box.

12. Click Next.

13. In the Schedule Request: Review page, verify all your entries. If satisfied, then
click Submit. If there are any problems with your request (for example, the end
date you have scheduled is before the start date), then you will be notified of the
error after clicking Submit.

For additional information about submitting a request for a concurrent program,
see the Oracle Applications User Guide.

14. If the concurrent program generates output, warnings, or errors, then examine the
concurrent program log file. For more information see Section B.6, "Viewing Log
Files" on page B-4.

15. To view the status of your concurrent program, see Section B.5 on page B-4.

B.2 Connecting to a Database Instance
Some implementation tasks must be performed using SQL*Plus while connected to a
specific database instance. For example, during data migration you must connect to
your source database instance prior to running a SQL script that sets up the migration
packages, database link, and appropriate log file.

To connect to a specific database, you must specify a user or schema and the instance
in which it is defined. For example:

1. Connect to your CZ schema by connecting to the database instance as a user of the
schema.

Example:

SQL> connect oc/ocpass@appssid

Note: Connecting to a database instance using SQL*Plus is not to be
confused with starting and logging on to Oracle Applications. For
information on logging on to Oracle Applications, see the Oracle
Application User’s Guide.

Server Administration

Common Tasks B-3

where oc is the owner (DBOwner) of the CZ schema, and ocpass is the owner’s
password, and appssid is the name for the database instance.

Alternatively, connect to the database instance as a user with DBA privileges:

Example:

SQL> connect dba/dbapass@appssid

B.3 Verifying CZ Schema Version
You can determine the version information of an CZ schema by either running the
View Configurator Parameters concurrent program or by querying the CZ_DB_
SETTINGS table as follows:

1. Connect to the database instance in which you need to know the version
information of the CZ schema.

2. Use SQL*Plus to enter the following query:

SQL> select setting_id, value, desc_text
from cz_db_settings
where setting_id like ’%_VERSION"

Querying the version of Release 11i available with the publication of this book results
in MAJOR_VERSION = 21, MINOR_VERSION = j.

These values will vary depending on the latest installed version. To determine which
version of Oracle Configurator Developer goes with which version of Configurator,
refer to note #131088.1 on Metalink.

For information about MAJOR_VERSION, MINOR_VERSION, and other CZ_DB_
SETTINGS parameters, see Section 4.4 on page 4-7.

B.4 Server Administration
If you are using separate database instances you need to define, enable, and possibly
modify the remote server. Defining and enabling a remote server establishes the
database link for:

■ Importing data (see Chapter 5, "Populating the CZ Schema")

■ Publishing configuration models (see Chapter 16, "Publishing Configuration
Models")

Oracle Configurator provides the following Server Administration concurrent
programs for the Oracle Configurator Administrator responsibility in Oracle
Applications:

■ Define Remote Server

■ Enable Remote Server

■ Modify Server Definition

■ View Servers

For details on running these concurrent programs, see Section C.2, "Server
Administration Concurrent Programs" on page C-5.

Viewing Status of Configurator Concurrent Programs Requests

B-4 Oracle Configurator Implementation Guide

B.5 Viewing Status of Configurator Concurrent Programs Requests
Because all reports, programs, and requests are run as concurrent programs in Oracle
Applications, the Concurrent Programs: View is used to:

■ View a list of all submitted concurrent programs by selecting All from the list

■ View all concurrent programs that have completed by selecting Completed from
the list

■ View all concurrent programs that have been requested in the last 24 hours by
selecting Last 24 hours from the list

■ View all concurrent programs that have a status of pending by selecting Pending
from the list

■ View all concurrent programs that are currently running by selecting Running
from the list

■ View the status and output of a particular request by selecting Search from the list
and then entering one or more criteria:

– Request ID

– Scheduled Request for

– Name

– Start Date

– End Date

For details on running the View concurrent program, see Section C.10, "View
Concurrent Program" on page C-27.

B.6 Viewing Log Files
Log files contain error and warning messages that result from running a concurrent
program or a SQL script. For information about the location of log files generated
when running scripts, see Oracle Configurator Installation Guide. For information about
viewing log files that result from running a concurrent program, see Section C.10,
"View Concurrent Program" on page C-27. See Example 16–2, "Publishing Error when
Checking BOM Model and Configuration Model" on page 16-10 for an illustration of
an error found in CZ_DB_LOGS.

B.7 Checking BOM Model and Configuration Model Similarity
See Section 7.2, "Synchronizing BOM Model Data" on page 7-1 for more information
on checking the similarity between the configuration model and the original BOM
Model.

Concurrent Programs C-1

C
Concurrent Programs

This appendix explains how to use the Oracle Configurator concurrent programs that
are available to the Oracle Configurator Developer and Oracle Configurator
Administrator responsibility in Oracle Applications:

■ Configurator Administration Concurrent Programs

■ Server Administration Concurrent Programs

■ Configuration Model Publication Concurrent Programs

■ Populate and Refresh Configuration Models Concurrent Programs

■ Model Synchronization Concurrent Programs

■ Execute Populators in Model Concurrent Program

■ Migration Concurrent Programs

■ Migrate Functional Companions

■ Publication Synchronization Concurrent Programs

■ View Concurrent Program

For general information about running Oracle Configurator concurrent programs, see
Section B.1 on page B-1.

C.1 Configurator Administration Concurrent Programs
The configurator administration concurrent programs are:

■ View Configurator Parameters

■ Modify Configurator Parameters

■ Purge Configurator Tables

■ Purge Configurator Import Tables

■ Purge To Date Configurator Import Tables

■ Purge To Run ID Configurator Import Tables

■ Select Tables to be Imported

■ Show Tables to be Imported

Configurator Administration Concurrent Programs

C-2 Oracle Configurator Implementation Guide

C.1.1 View Configurator Parameters
The View Configurator Parameters concurrent program allows the viewing of
parameter values stored in the CZ_DB_SETTINGS table. See Section 4.4, "CZ_DB_
SETTINGS Table" on page 4-7 for details about the parameters in that table.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs > Schedule

Parameters

Output
The output containing the values for the specified SECTION_NAME and SETTING_ID
is recorded in a log file (see Section C.10, "View Concurrent Program" on page C-27).

C.1.2 Modify Configurator Parameters
The Modify Configurator Parameters concurrent program allows the changing of
parameter values in the CZ_DB_SETTINGS table. Configurator parameters are stored
in the CZ_DB_SETTINGS table. See CZ_DB_SETTINGS Table on page 4-7 for details
about the parameters in that table.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule

Table C–1 Parameters for the View Configurator Parameters Concurrent Program

Parameter Description

Section Name From the list of values, select the SECTION_NAME of the section
in the Oracle Configurator CZ_DB_SETTINGS Table where the
setting resides. For example IMPORT. See Table 4–3, " Settings in
CZ_DB_SETTINGS Table" on page 4-8 for more information.

Setting ID From the list of values, select the SETTING_ID in the Oracle
Configurator CZ_DB_SETTINGS Table for the setting. For
example, CommitSize. See Section 4.4.3.5, "CommitSize" on
page 4-10 for more information.

Configurator Administration Concurrent Programs

Concurrent Programs C-3

Parameters

Output
The output containing the modified values of the CZ_DB_SETTINGS Parameters you
specified is recorded in a log file (see Section C.10, "View Concurrent Program" on
page C-27).

C.1.3 Purge Configurator Tables
The Purge Configurator Tables concurrent program physically removes all
logically-deleted records in the tables and subschemas of the CZ schema. Periodically
running this concurrent program improves database performance. See Chapter 8, "CZ
Schema Maintenance" for more information about purging the CZ schema. See the
Oracle Configurator Performance Guide for additional information about improving
database performance.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule

Parameters
None

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

Table C–2 Parameters for the Modify Configurator Parameters Concurrent Program

Parameter Description

Section Name From the list of values, select the name of the section in the
Oracle Configurator CZ_DB_SETTINGS table where the setting
resides. See Table 4–3, " Settings in CZ_DB_SETTINGS Table" on
page 4-8.

Setting ID From the list of values, select the setting in the Oracle
Configurator CZ_DB_SETTINGS table you want to modify. See
Table 4–3, " Settings in CZ_DB_SETTINGS Table" for more
information on the settings in each SECTION_NAME.

Value Enter the value for the particular parameter. See Section 4.4 for
more information on valid values for each of the settings in each
SECTION_NAME.

Type From the list of values, select the data type (1= number or 4=
string) of the setting you are modifying.

Description Enter a brief description for this value selection.

Configurator Administration Concurrent Programs

C-4 Oracle Configurator Implementation Guide

C.1.4 Purge Configurator Import Tables
The Purge Configurator Import Tables concurrent program deletes all data in the CZ_
IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS, and CZ_XFR_
RUN_RESULTS control tables. Periodically running this concurrent program improves
import performance. See Chapter 8, "CZ Schema Maintenance" for more information
about purging the CZ schema. See the Oracle Configurator Performance Guide for
additional information about improving database performance.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
None

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.1.5 Purge To Date Configurator Import Tables
The Purge To Date Configurator Import Tables concurrent program deletes data in the
CZ_IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS and CZ_
XFR_RUN_RESULTS control tables. The data for the number of days specified in the
input parameter is retained. Periodically running this concurrent program improves
import performance. See Chapter 8, "CZ Schema Maintenance" for more information
about purging the CZ schema. See the Oracle Configurator Performance Guide for
additional information about improving database performance.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Table C–3 Parameter for the Purge To Date Configurator Import Tables Concurrent
Program

Parameter Description

Number of Days This is the number of days back that you want to retain your
imported data. All data imported prior to the specified number
of days back is deleted.

Server Administration Concurrent Programs

Concurrent Programs C-5

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.1.6 Purge To Run ID Configurator Import Tables
The Purge To Run ID Configurator Import Tables concurrent program deletes data in
the CZ_IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS, and CZ_
XFR_RUN_RESULTS control tables. All subsequent data from the specified Run ID
input parameter is retained. Periodically running this concurrent program improves
import performance. See Chapter 8, "CZ Schema Maintenance" for more information
about purging the CZ schema. See the Oracle Configurator Performance Guide for
additional information about improving database performance.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.2 Server Administration Concurrent Programs
The server administration concurrent programs are:

■ Add Application to Publication Applicability List

■ Define Remote Server

■ Enable Remote Server

■ Modify Server Definition

■ View Servers

See Chapter 3, "Database Instances" for information about a multi-server environment
requiring use of these concurrent programs.

Table C–4 Parameter for the Purge To Date Configurator Import Tables Concurrent
Program

Parameter Description

Run ID This is the earliest import run ID that you want to retain. All
data imported prior to the specified run ID is deleted.

Server Administration Concurrent Programs

C-6 Oracle Configurator Implementation Guide

C.2.1 Add Application to Publication Applicability List
The Add Application to Publication Applicability List concurrent program adds a
registered Oracle application to the CZ_EXT_APPLICATIONS table. Entries in the CZ_
EXT_APPLICATIONS table are displayed in the Applications list of values parameter
on the Publications page. For more information on the Applications parameter, see
Section 16.3.4.1, "Applications" on page 16-7.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.2.2 Define Remote Server
The Define Remote Server concurrent program creates a new remote server definition
and adds the name of the remote database instance to the:

■ CZ_SERVERS table. For more information, see the CZ eTRM on Metalink, Oracle’s
technical support Web site.

■ Database Instance publication applicability parameter list in Oracle Configurator
Developer

■ Target Instance parameter for the Models synchronization concurrent programs

■ Source Name parameter for the Setup Configurator Data Migration concurrent
program

■ Target Instance parameter for the Publication synchronization concurrent
programs

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Table C–5 Parameter for the Add Application to Publication Applicability List
Concurrent Program

Parameter Description

Application Name From the list of values, select the desired application. The
displayed applications are registered Oracle Applications found
in the FND_APPLICATION table.

Server Administration Concurrent Programs

Concurrent Programs C-7

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.2.3 Enable Remote Server
Enable Remote Server concurrent program performs all the operations needed to
enable a remote server for import, publishing, synchronizing and migrating data.
When a remote server is enabled, the list of remote BOM Models are linked into the
local instance for use by the Populate/Refresh Configuration Models concurrent
program. If a remote server is going to be the source for importing data, then the
Import Enabled parameter must be Y. For more information about importing data, see
Chapter 5, "Populating the CZ Schema".

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Table C–6 Parameters for the Define Remote Server Concurrent Program

Parameter Description

Local Name This is the local name for the remote instance. It is the name that:

■ appears in the list when creating a publication record and
specifying the Database Instance applicability parameter

■ is in the list of values when a Target or Source Instance
parameter is needed for running a concurrent program

■ appears in the list of values when enabling a remote server.
For example, production

Host Name A TCP host name for the server where the CZ schema is found.
This can be an IP address or the actual name of the server. This is
the actual computer. For example, myserver.

DB Listener Port A TCP port number on which this database server is listening for
client connections. For example, 1523.

Instance Name The Instance Name identifies a specific instance of the Oracle
database. This is the instance name on the remote server. Also
known as the SID. The Instance Name appears in the
TNSNAMES.ORA file.

Oracle Applications
Schema Name (FNDNAM)

The Name of Oracle Applications Schema (FNDNAM).

Global Identity When the database initialization parameter GLOBAL_NAMES is
set to true, this field should be set to the name of the remote
server. When GLOBAL_NAMES is true, the name of the FND
Link Name must match the global name of the database you are
linking to.

Description Any notes you want to make regarding this server.

FND Link Name The name of the remote server link to the Oracle Applications
schema. For example, czvis1.world.

Import Enabled (Y/N) Enable or disable import on the remote server. Only one remote
server can be enabled for import at a time.

Server Administration Concurrent Programs

C-8 Oracle Configurator Implementation Guide

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.2.4 View Servers
The View Servers concurrent program writes each defined server’s information to the
concurrent program log.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
None

Output
The log file lists each defined server’s Server Name (corresponding input parameter is
Local Name), Host Name, Port, Instance Name, Server Db Version, FND Name, Global
Name, Notes (corresponding input parameter is Description), FND Link Name,
Import Enabled. There is no indication whether the defined server has been enabled.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.2.5 Modify Server Definition
The Modify Server Definition concurrent program allows the changing of the server’s
previously defined input parameters. For example, if you are changing your import
source from the local server to a remote server, you must run the Modify Server
Definition concurrent program to change the value of the Import Enabled parameter
for the local server in addition to defining and enabling the remote server for import.

Table C–7 Parameters for the Enable Remote Server Concurrent Program

Parameter Description

Server Local Name Select from the list of values or enter the name of the server entry
that you want to enable. "FOREIGN" (-1) and the local server (0)
are invalid parameters.

Password This is the password for the Oracle Applications schema
(FNDNAM) on this remote server.

Configuration Model Publication Concurrent Programs

Concurrent Programs C-9

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.3 Configuration Model Publication Concurrent Programs
The publication concurrent programs include:

■ Process Pending Publications

Table C–8 Parameters for the Modify Server Definition Concurrent Program

Parameter Description

Local Name This is the local name for the remote instance. It is the name that:

■ appears in the list when creating a publication record and
specifying the Database Instance applicability parameter

■ is in the list of values when a Target or Source Instance
parameter is needed for running a concurrent program

■ appears in the list of values when enabling a remote server.
For example, production

Host Name A TCP host name for the server where the CZ schema is found.
This can be an IP address or the actual name of the server. This is
the actual computer. For example, myserver

DB Listener Port A TCP port number on which this database server is listening for
client connections.

Instance Name The Instance Name identifies a specific instance of the Oracle
database. Also known as the SID. This name appears in the
TNSNAMES.ORA file.

Oracle Applications
Schema Name (FNDNAM)

A Name of Oracle Applications Schema (FNDNAM).

Global Identity When the database initialization parameter GLOBAL_NAMES is
set to true, this field should be set to the name of the remote
server. When GLOBAL_NAMES is true, the name of the FND
Link Name must match the global name of the database you are
linking to.

Description Any notes you want to make regarding this server.

FND Link Name The Name of the remote server link to the Oracle Applications
schema. For example, czvis1.world.

Import Enabled (Y/N) Enable or disable import on this server. Only one remote server
can be enabled for import at a time.

Configuration Model Publication Concurrent Programs

C-10 Oracle Configurator Implementation Guide

■ Process a Single Publication

These concurrent programs create a copy of a configuration model’s structure, rules,
and UI by copying the data from the development database instance to the CZ_
MODEL_PUBLICATIONS table on the target Database Instance specified in the
Oracle Configurator Developer Model Publication page.

These concurrent programs must be run in the source database. The source database is
the database in which the configuration model and its publication record are defined.
The target database for the publication process is specified by the publication’s
applicability parameters. See the Oracle Configurator Developer User’s Guide and
Section 16.3.4, "Publication Applicability Parameters" on page 16-6 for more
information about applicability parameters.

Typically, concurrent programs are scheduled to run automatically. If for some reason
you do not have these concurrent programs scheduled, or you cannot wait to publish
your Model until the next scheduled request run, you can run either program
manually.

The target publication database instance must be defined and enabled as a remote
server unless the target server is the same as the source server. If the target server is
the same as the source server, then the target server does not have to be enabled. See
Server Administration Concurrent Programs on page C-5.

Running the publication concurrent programs includes BOM Model synchronization.
For details, see Section 7.2.2, "Checking BOM and Model Similarity" on page 7-2 and
Section 16.4, "Publishing a Configuration Model" on page 16-8.

C.3.1 Process Pending Publications
The Process Pending Publications concurrent program publishes all publications in the
CZ_PB_MODEL_EXPORTS table that have a STATUS of PEN to their specified
Database Instance applicability parameter.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database where the
configuration model and its publication are defined.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
None

Note: When running the Process Pending Publications concurrent
program, all affected Models including referenced Models are
temporarily locked while the program is running. If any affected
Model is already locked by a user other than the one making the
request, the concurrent program logs an error without completing the
request. For details about locking objects, see the Oracle Configurator
Developer User’s Guide.

Populate and Refresh Configuration Models Concurrent Programs

Concurrent Programs C-11

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.3.2 Process a Single Publication
The Process a Single Publication concurrent program publishes the selected
publication to its specified Database Instance applicability parameter.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database where the
configuration model and its publication are defined.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.4 Populate and Refresh Configuration Models Concurrent Programs
The concurrent programs for populating and refreshing configuration models are:

■ Populate Configuration Models

■ Refresh a Single Configuration Model

■ Refresh All Imported Configuration Models

■ Disable/Enable Refresh of a Configuration Model

■ Import Configuration Rules

Note: When running the Process a Single Publication concurrent
program, all affected Models including referenced Models are
temporarily locked while the program is running. If any affected
Model is already locked by a user other than the one making the
request, the concurrent program logs an error without completing the
request. For details about locking objects, see the Oracle Configurator
Developer User’s Guide.

Table C–9 Parameters for the Process a Single Publication Concurrent Program

Parameter Description

Publication Select from the list of values or enter the publication ID of the
publication you want to export to the database instance specified
in the publication record. The publication ID is displayed in the
Model Publication page in Oracle Configurator Developer, and is
stored in the CZ_MODEL_PUBLICATIONS table.

Populate and Refresh Configuration Models Concurrent Programs

C-12 Oracle Configurator Implementation Guide

Use the Populate/Refresh Configuration Models concurrent programs to import data
into the CZ schema, including:

■ Extracting BOM Model data into the correct format for transfer (Standard Import,
only)

■ Loading the data into the import tables (Standard Import, only)

■ Populating the online CZ schema with the data from the import tables

For more information about data import, see Chapter 5, "Populating the CZ Schema".

C.4.1 Populate Configuration Models
The Populate Configuration Models concurrent program populates the CZ schema
online tables with data for creating configuration models that are based on existing
BOMs or legacy data.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database into which you
are importing data.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
If no data is available in the list of values for the following parameter fields, see
Section C.4.1.1, "Populate Configuration Models Concurrent Program Error Messages"
on page C-13.

Note: The Populate and Refresh Configuration Models concurrent
programs do not provide an automated or scheduled mechanism that
clears the import tables.

Oracle does not recommend running Populate and Refresh
Configuration Models Concurrent Programs and Import
Configuration Rules concurrent program at the same time.

Note: When running the Populate/Refresh Configuration Models
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the
Oracle Configurator Developer User’s Guide.

You cannot run simultaneous Populate/Refresh Configuration Models
requests. If there is another Populate/Refresh Configuration Models
running when you start the concurrent program, then your request
will terminate.

Populate and Refresh Configuration Models Concurrent Programs

Concurrent Programs C-13

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.4.1.1 Populate Configuration Models Concurrent Program Error Messages
On certain error conditions there is no data in the extraction views and the list of
values for a new import does not have any data. In these cases, the list of values for the
Populate Configuration Models concurrent program displays a ’No entries found
for List of Values’ message. Possible reasons for the missing data include:

■ The server’s Enabled for Import parameter has not been set to Y

■ The Enable Remote Server concurrent program did not complete successfully

■ The database link is down

■ The remote database is down

■ The extraction views are invalid

If the database link is down, the following message appears:

’error 2019: connection description for remote database not found’

(The SQL statement that is currently running follows this message.)

Action:
1. The Oracle Configurator Administrator must run the Modify Server Definition

concurrent program and Enable Remote Server for import (if one is not already
selected). See Table C–8, " Parameters for the Modify Server Definition Concurrent
Program" on page C-9 and Section C–7, " Parameters for the Enable Remote Server
Concurrent Program" on page C-8.

2. Run Enable Remote Server if the enabled server is not LOCAL. See Table C–7,
" Parameters for the Enable Remote Server Concurrent Program" on page C-8.
Rerunning this concurrent program recreates the extraction views.

C.4.2 Refresh a Single Configuration Model
The Refresh a Single Configuration Model concurrent program updates the imported
BOM Model data in the CZ schema when information in Oracle Applications Bills of
Material and Inventory has changed.

Table C–10 Parameters for the Populate Configuration Models Concurrent Program

Parameter Description

Organization Code Select from the list of values or enter the BOM Models’ Inventory
organization that you want to import the BOM Models from.

Model Inventory Item From Select the first Model Inventory Item in the range of BOM
Models you want to import.

All Model Inventory Items between and including the first and
last specified in this and the next field, are included in the data
import. The range can include multiple types of Model Inventory
Items. For example, from ATO800 to PTO500 is a valid range.

Model Inventory Item To Select the last Model Inventory Item in the range of items for
which you want to import data. If you want to import a single
model, enter the same Model Inventory Item that you entered for
the Model Inventory Item From parameter.

Populate and Refresh Configuration Models Concurrent Programs

C-14 Oracle Configurator Implementation Guide

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database in which you
are refreshing data.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
Table C–11 lists the parameters used for the Refresh a Single Configuration Model
concurrent programs.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.4.3 Refresh All Imported Configuration Models
The Refresh All Imported Configuration Models concurrent program updates all of
your imported BOM Model data.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database in which you
are refreshing data.

Note: When running the Refresh a Single Configuration Model
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the
Oracle Configurator Developer User’s Guide.

Table C–11 Parameters for the Refresh a Single Configuration Model and
Disable/Enable Refresh Concurrent Programs

Parameter Description

Folder Enter the name of the Configurator Developer Repository Folder
in which the configuration model resides, or select a Folder from
the list of values.

Configuration Model ID Select a Model from the list of values.

Note: When running the Refresh All Imported Configuration Models
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the
Oracle Configurator Developer User’s Guide.

Populate and Refresh Configuration Models Concurrent Programs

Concurrent Programs C-15

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
None

C.4.4 Disable/Enable Refresh of a Configuration Model
The Disable/Enable Refresh of a Configuration Model concurrent program prevents
(disables) or allows (enables) either of the Refresh Configuration Model concurrent
programs to update a specific configuration model. You may want to prevent a
configuration model from being updated if you are currently designing its
configuration rules in Configurator Developer. This concurrent program is run in the
database instance where the configuration model resides.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database containing the
configuration model whose refresh is being controlled.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
Table C–12 lists the parameters used for both the Disable/Enable Refresh of a
Configuration Model concurrent programs.

C.4.5 Import Configuration Rules
The Import Configuration Rules concurrent program imports rules that are written in
Constraint Definition Language format into the CZ schema. For more information, see
Section 5.3, "Rule Import" on page 5-16.

Table C–12 Parameters for the Disable/Enable Refresh Concurrent Programs

Parameter Description

Folder Enter the name of the Configurator Developer Repository Folder
in which the configuration model resides, or select a Folder from
the list of values.

Configuration Model ID Select a Model from the list of values.

Refresh Enabled (Y/N) The response of Yes or No indicates whether the specified Model
is refreshed when the Refresh concurrent programs are run.

Populate and Refresh Configuration Models Concurrent Programs

C-16 Oracle Configurator Implementation Guide

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters
See Table C–13 on page C-16

Output
Rules are validated for CDL structure and rule participants. If an imported rule has a
parsing error, the parsing error is written in both the concurrent program log file and
CZ_IMP_RULES.MESSAGE. The REC_STATUS for CZ_IMP_RULES and CZ_IMP_
LOCALIZED_TEXTS is ERR, and CZ_IMP_LOCALIZED_TEXTS.DISPOSITION is R.
Rules imported into the CZ schema can be edited either in Configurator Developer or
the source environment.

The rule import run data is logged in the CZ_XFR_RUN_INFOS table as well as the
CZ_XFR_RUN_RESULTS table. For more information about these tables and the tables

Note: You cannot run simultaneous Import Configuration Rules
requests. If there is another Import Configuration Rules request
running, then your rule import request will terminate.

If the rule’s Model is locked, then an appropriate message is returned
and the configuration rules are not imported into the CZ schema.

Table C–13 Parameter for the Import Configuration Rules Concurrent Program

Parameter Description

Run ID This is an optional import session parameter. Run ID identifies a
set of source data that is converted into rules after the data is
imported into the CZ schema. If this parameter is null, then the
records in CZ_IMP_RULES with RUN_ID, REC_STATUS, and
DISPOSITION that are NULL are imported into the CZ schema
and will have a generated RUN_ID.

If Run ID is not null, then all records in CZ_IMP_RULES with
the given RUN_ID are processed and refreshed in the CZ
schema.

If the Run ID is an invalid Run ID, then the following message is
returned: ’No data found in the CZ_IMP_RULES table
with RUN_ID = &RUNID’.

Note: If you want to refresh a set of rules that have the same Run ID,
you must first manually set CZ_IMP_RULES.REC_STATUS, CZ_IMP_
RULES.DISPOSITION, CZ_IMP_LOCALIZED_TEXTS.REC_STATUS,
and CZ_IMP_LOCALIZED_TEXTS.DISPOSITION to NULL for those
records that have the desired Run ID. You then run the Import
Configuration Rules concurrent program with the Run ID. Note that
any changes made to the rule in Configurator Developer will be
overridden with the newly imported rule.

Model Synchronization Concurrent Programs

Concurrent Programs C-17

used during rule import, see the CZ eTRM on Metalink, Oracle’s technical support
Web site.

Any concurrent program errors or warnings are in the FND log file. See Section B.6,
"Viewing Log Files" on page B-4.

C.5 Model Synchronization Concurrent Programs
The model synchronization concurrent programs include:

■ Check Model/Bill Similarity

■ Check All Models/Bills Similarity

■ Synchronize All Models

Check Model/Bill Similarity and Check All Models/Bills Similarity compare the
imported model and the BOM Model to see if they are similar enough to synchronize.
If key validation fields are not equal, then the requests generate a Model/Bill
Similarity Check Report listing the fields with discrepancies. The user must resolve the
discrepancies before synchronizing the models. This is an iterative process. Once the
validation fields are corrected and the report no longer returns discrepancies, the
Synchronize All Models can be run.

See Chapter 7, "Synchronizing Data"for more information.

C.5.1 Check Model/Bill Similarity
The Check Model/Bill Similarity concurrent program compares a single configuration
model with the BOM Model on which it is based, and produces a Model/Bill
Similarity Check Report of discrepancies, if any. See Section 7.2.3, "Criteria for BOM
Model Similarity" on page 7-2 for information about the validation criteria used by this
concurrent program.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database containing the
configuration model that must be checked.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Table C–14 Parameters for the Check Model/Bill Similarity Concurrent Program

Parameter Description

Target Instance A list of available instances, as defined by the Define Remote
Server concurrent program. Select the instance that contains the
source BOM Model with which the configuration model must be
synchronized.

Folder A list of folders (Configurator Developer Repository Folders) on
the specified Target instance. Select the Folder that contains the
Model to be checked against the BOM Model in the Target
Instance.

Model Synchronization Concurrent Programs

C-18 Oracle Configurator Implementation Guide

Output
A report is generated with the results. See Section C.5.4, "Model/Bill Similarity Check
Report".

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.5.2 Check All Models/Bills Similarity
The Check All Model/Bill Similarity concurrent program compares all configuration
modes in the local database instance with the BOM Models on which they are based,
and produces a Model/Bill Similarity Check Report of discrepancies, if any. See
Section 7.2.3, "Criteria for BOM Model Similarity" on page 7-2 for information about
the validation criteria used by this concurrent program.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database containing the
configuration models that need to be checked.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Output
A report is generated with the results. See Section C.5.4, "Model/Bill Similarity Check
Report".

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.5.3 Synchronize All Models
The Synchronize All Models concurrent program modifies the configuration models
on the local database instance to match the corresponding BOM Models in the Bills of
Material schema that is to serve as the new import server or publication target. All
imported models in the CZ schema of the current instance are synchronized with the
corresponding structures of the bills on a target instance.

List of Models A list of all Models in the specified Folder on the specified Target
instance. Select a Model from the list of values.

Table C–15 Check All Models/Bills Similarity Parameters

Parameter Description

Target Instance A list of available instances, as defined by the Define Remote
Server concurrent program. Select the instance that contains the
source BOM Model with which the configuration model must be
synchronized.

Table C–14 (Cont.) Parameters for the Check Model/Bill Similarity Concurrent Program

Parameter Description

Model Synchronization Concurrent Programs

Concurrent Programs C-19

The Synchronize All Models concurrent program is run after all errors and
discrepancies in the report generated by the Check All Models/Bills Similarity
concurrent program have been corrected (see Section C.5.4, "Model/Bill Similarity
Check Report" on page C-19).

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database containing the
configuration model that must be synchronized.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
None

Output
A report is generated with the results. See Section C.5.4, "Model/Bill Similarity Check
Report".

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.5.4 Model/Bill Similarity Check Report
The Model/Bill Similarity Check Report is generated every time you run the Check
Model/Bill Similarity, Check All Models/Bills Similarity and Synchronize All Models
concurrent programs. The report is displayed in a standard report log file generated by
concurrent programs. For detailed information on concurrent processing reporting
options, see the Oracle Application’s User’s Guide. For a list of validation criteria used to
generate the report, see Section 7.2.3, "Criteria for BOM Model Similarity" on page 7-2.

The Model/Bill Similarity Check Report contains a comprehensive message describing
the list of problems that were encountered. The list starts with a message providing the
version of the package and the run time. For example, the following message occurs
when the BOM Model does not exist on the target server:

BOM Synchronization, version 115.15, started 2001/10/23/14:05:16, session run ID:
12017
There is no root bill for configuration model Name of the Model, unable to verify
the model."

The following message occurs when there is a discrepancy with an Inventory Item.

BOM Synchronization, version 115.15, started 2001/10/29/14:05:16, session run ID:
12018
'PTO_OC1' with parent 'BOM_SYNCH' in configuration model 'BOM_SYNCH' cannot be
matched with any inventory item.

WARNING: Oracle Configurator Developers must not modify
Models when the Synchronize All Models concurrent program is
running.

Execute Populators in Model Concurrent Program

C-20 Oracle Configurator Implementation Guide

C.6 Execute Populators in Model Concurrent Program
The Execute Populators in Model concurrent Program is the same procedure as if you
repopulated a Model in Oracle Configurator Developer by choosing Tools >
Repopulate from the Model window. It is advantageous to run the Execute Populators
in Model concurrent program, as repopulating a Model in Oracle Configurator
Developer is time consuming and the concurrent program can be scheduled to run at a
specific time. For information about Populators, see Oracle Configurator Developer
User’s Guide.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the database containing the
configuration model in which Populators should be implemented.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.7 Migration Concurrent Programs
The migration concurrent programs are:

■ Setup Configurator Data Migration

■ Migrate Configurator Data

The migration concurrent programs move data from a source CZ schema to an empty
target CZ schema. See Section 6.2, "Migrating Data from Another CZ Schema" on
page 6-1 for prerequisites before running the migration concurrent programs.

The source database server must be defined and enabled as the remote server (see
Section C.2, "Server Administration Concurrent Programs" on page C-5).

C.7.1 Setup Configurator Data Migration
The Setup Configuration Data Migration concurrent program identifies the source
database instance of a data migration.

Table C–16 Parameters for the Execute Populators in Model Concurrent Program

Parameter Description

Folder A list of folders (Configurator Developer Repository Folders) on
the current instance. Select the Folder that contains the Model in
which you want Populators to be implemented.

Configuration Model ID Select a Model from the list of values. Configuration Model ID is
the same ID as the DEVL_PROJECT_ID.

Migration Concurrent Programs

Concurrent Programs C-21

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the target database into
which you are migrating data.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file (see Section C.10, "View Concurrent Program" on page C-27).

In the Request concurrent program, view the log file to verify that no issues were
found during the migration setup. Possible issues are:

■ Specified instance name does not have an associated database link

■ Associated database link is not functional

■ Database error occurred during the population of the control tables

■ Schema versions for the source and target databases are not the same

■ Difference in table structure

If any issues are found, correct them and run Setup Configuration Data Migration
again.

C.7.2 Migrate Configurator Data
The Migrate Configurator Data concurrent program migrates the data from the source
database instance to the target database instance. See Chapter 6, "Migrating Data" for
migration requirements.

Use the procedure described in Section B.1, "Running Configurator Concurrent
Programs" on page B-1 to run this concurrent program in the empty target database
into which you are migrating data.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Table C–17 Parameters for the Setup Configurator Data Migration Concurrent Program

Parameter Description

Source Enter the name of the source database instance containing the
data to be migrated, or select a source from the list of values
defined by the Define Remote Server concurrent program.

Migrate Functional Companions

C-22 Oracle Configurator Implementation Guide

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.8 Migrate Functional Companions
The Functional Companion migration concurrent programs are:

■ Migrate All Functional Companions

■ Migrate Functional Companions for a Single Model

These concurrent programs transform existing Functional Companion association data
in the database to the new form of association data used for Configurator Extensions.

After you upgrade to the release of Oracle Configurator described in this document,
you may need to migrate Functional Companions that were created with previous
releases.

See the Oracle Configurator Installation Guide for background information.

C.8.1 Migrate All Functional Companions
The Migrate All Functional Companions concurrent program creates Configurator
Extension associations for all Functional Companions in the database.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
None

Output
If the migration finishes without errors, then Configurator Extension Rules
(association data) are created for all Functional Companions in the database.

Table C–18 Parameters for the Migrate Configurator Data Concurrent Program

Parameter Description

Proceed when database not
empty?

Enter Yes or No to this prompt. The migration should only be run
against an empty target database. However, if for some reason
the original migration does not complete successfully (for
example a roll back segments problem), then the migration must
be rerun after the roll back segments problem has been resolved.
If the migration is repeated after such a correction, then the
Proceed when database not empty? prompt can be
answered Yes

Note: You must perform some setup tasks before and after running
this concurrent program. See the Oracle Configurator Installation Guide.

Migrate Functional Companions

Concurrent Programs C-23

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4. If errors occur
while processing a Model, the migration for that Model stops, and all transactions are
rolled back. Processing continues for other Models in the database.

C.8.2 Migrate Functional Companions for a Single Model
The Migrate Functional Companions for a Single Model concurrent program creates
Configurator Extension associations for the Functional Companions associated with a
specified Model.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
If the migration finishes without errors, then Configurator Extension Rules
(association data) are created for all Functional Companions associated with the
selected Model.

WARNING: After you successfully migrate Functional Companions
to Configurator Extensions, all existing Functional Companion data
is logically deleted from the database.

Note: You must perform some setup tasks before and after running
this concurrent program. See the Oracle Configurator Installation Guide.

Table C–19 Parameters for the Migrate Functional Companions for a Single Model
Concurrent Program

Parameter Description

Model ID This is the Model that contains Functional Companions to be
migrated. A list of all Models is available to select from,
including those that do not contain Functional Companions at all
and those that do not contain Functional Companions but whose
child Models contain Functional Companions. If you choose a
Model that does not contain Functional Companions then the
migration still runs, but the migration log shows that the Model
contained no Functional Companions. To migrate Functional
Companions that are contained in any child Models, you must
choose the option for deep migration.

Migrate Child Model’s FC This is a Yes/No flag indicating whether you want the
concurrent program to perform a deep migration. A Yes response
means that all of the Functional Companions associated with the
selected Model and its child Models will be migrated.

Publication Synchronization Concurrent Programs

C-24 Oracle Configurator Implementation Guide

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4. If no errors
occur in the migration, then all transactions related to the specified Model are
committed. If errors occur while processing the Model, the migration process stops,
and all transactions are rolled back.

C.9 Publication Synchronization Concurrent Programs
The publication synchronization concurrent programs are:

■ Synchronize Cloned Target Data

■ Synchronize Cloned Source Data

These concurrent programs resolve data inconsistencies that result when a source or
target database instance is cloned, or migrated from a different database instance.

Publication synchronization updates publication record pointers to servers, checks
overlaps of applicability parameters and item definitions, and realigns relationships
between publication records that became invalid.

Before running these concurrent programs, the target database instance must be
defined and enabled to establish the database link. See Section C.2, "Server
Administration Concurrent Programs" on page C-5 for information about defining and
enabling a remote server.

C.9.1 Synchronize Cloned Target Data
The Synchronize Cloned Target Data ensures that publication data on the cloned
publication target database instance matches that on the publication source database
instance. For example, you have published models and are working with two database
instances: a publication source and a publication target. You then clone the publication
target. The publication data on the cloned publication target does not recognize the
publication source until you run the Synchronize Cloned Target Data. For more
information see Section 7.3.1, "Synchronizing Publication Data after a Database
Instance is Cloned" on page 7-5.

If the publication records on the target exist on the source database instance, then the
SERVER_ID of the target publication is updated and a new publication record is
created on the source database instance with updated references.

The Synchronize Cloned Target Data concurrent program must be run in the database
instance that serves as the publication source for the cloned publication target. Use the

WARNING: After you successfully migrate Functional Companions
for a Model to Configurator Extensions, the existing Functional
Companion data for the Model is logically deleted from the
database.

Note: Do not:

■ Publish or republish Models when the synchronization concurrent
programs are running

■ Synchronize publications when publishing or republishing
Models

Publication Synchronization Concurrent Programs

Concurrent Programs C-25

procedure described in Section B.1, "Running Configurator Concurrent Programs" on
page B-1 to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

If the Model and UI in the target database instance publication record do not match
the Model and UI in the source database instance publication record from which the
Synchronize Cloned Target Data concurrent program is running, then the program
logs an error, and the concurrent program terminates. The Model Publication page in
Oracle Configurator Developer displays Error in the Status column (see the Oracle
Configurator Developer User’s Guide).

C.9.2 Synchronize Cloned Source Data
The Synchronize Cloned Source Data ensures that publication data on the publication
target database instance points to the cloned publication source database instance. For
example, you have published models and are working with two database instances: a
publication source and a publication target. You then clone the publication source. The
publication data on the publication target does not recognize the publication source
until you run the Synchronize Cloned Source Data. For more information see
Section 7.3.2.5, "Example of Synchronizing Publication Data on a Cloned Source" on
page 7-9.

Before running the concurrent program, the cloned source database instance must be
defined and enabled to establish the database link. See "Define Remote Server" on
page C-6 and "Enable Remote Server" on page C-7. This concurrent program is run
from the cloned source database instance.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Table C–20 Synchronize Cloned Target Data

Parameter Description

Target database instance Enter the name of the cloned publication target database
instance, or select a cloned publication target from the list of
values defined by the Define Remote Server concurrent program.

Publication Synchronization Concurrent Programs

C-26 Oracle Configurator Implementation Guide

Parameters

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.9.3 Select Tables to be Imported
You may want to specify only a group of tables from which extracted data is loaded
into the import tables. The CZ_XFR_TABLES.DISABLED field determines if a specific
table is enabled or disabled for import.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
All parameters for this concurrent program are required.

Example C–1 Importing Data into a Specific Table

The following is an example that enables a table for importing data.

Destination Table Name: CZ_ITEM_MASTERS
Import Group: Import
Enable:Y

Table C–21 Synchronize Cloned Source Data

Parameter Description

Decommission Original
Source? (Yes/No)

If the original source server is decommissioned, then the CZ_
SERVERS.SOURCE_SERVER_FLAG on the target is updated to
no longer point to the original source server.
If the original source server is not decommissioned, then the
publication entries are logically deleted from the tables on the
cloned source server to avoid conflicts with the original
publication source.

Table C–22 Import Data into Specific Tables

Parameter Description

Name This is a list of concurrent programs. Select the Select Tables To
Be Imported concurrent program from the list.

Destination Table Name This is a list of tables in the CZ schema for which import is
enabled or disabled. The table names display with a description
of Import, Extract, Generic, or Populators. Be sure to select the
table name with the appropriate description.

Import Group From the list of values, select the name of the phase or group in
which import is to be enabled or disabled for the specified table:
Export, Import or Generic

Enable (Y or N) From the list of values, select N to disable or Y to enable the
specified table for the specified import phase.

View Concurrent Program

Concurrent Programs C-27

Action
After specifying the parameters click OK. In the Submit Request window, click
Submit.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4.

C.9.4 Show Tables to be Imported
You can display the tables that are currently enabled for import.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters

Example C–2 Show Tables to be Imported

The following example displays the current Disable setting for the CZ_XFR_TABLES.

Table Name: CZ_ITEM_MASTERS
Phase Name: Import

Action
After specifying the parameters click OK. In the Submit Request window, click
Submit.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Section B.6, "Viewing Log Files" on page B-4. The return for
Example C–2, "Show Tables to be Imported":

Example C–3 Return from the Show Tables to be Imported Concurrent Program

DST_TABLE = CZ_ITEM_MASTERS
XFR_GROUP = IMPORT
DISABLED_FLAG = 0

C.10 View Concurrent Program
The Concurrent Programs: View enables you to:

Table C–23 Show Tables to be Imported

Parameter Description

Table Name Enter the table in the CZ schema that you are querying the
import disability.

Import Group: Enter either Extract, Generic, or Import for which you want to
display the Import Enable setting.

View Concurrent Program

C-28 Oracle Configurator Implementation Guide

■ View a list of all submitted concurrent programs by selecting All from the list

■ View all concurrent programs that have completed by selecting Completed from
the list

■ View all concurrent programs that have been requested in the last 24 hours by
selecting Last 24 hours from the list

■ View all concurrent programs that have a status of pending by selecting Pending
from the list

■ View all concurrent programs that are currently running by selecting Running
from the list

■ View the status and output of a particular request by selecting Search from the list
and then entering one or more criteria:

– Request ID

– Scheduled Request for

– Name

– Start Date

– End Date

For additional information about the Concurrent Program: View, see the Oracle
Application User’s Guide.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window > Oracle Configurator Administrator or Oracle Configurator
Developer > Concurrent Programs: View.

Parameters
The Requests page presents six categories of Requests:

■ All

■ Completed

■ Last 24 hours

■ Pending

■ Running

■ Search

The requests display with the Status, Name, Phase, Scheduled Date, Details, Output,
Request ID, and Republish.

If your system administrator set the profile option Concurrent: Report Access Level to
User, then the Requests page displays the concurrent requests for the current user.

If this profile option is set to Responsibility, then the Requests page displays all
concurrent requests for the current responsibility in addition to the current user’s
requests.

Action
Determine the type of Request and click Go.

View Concurrent Program

Concurrent Programs C-29

Output
The Request page displays the Status, Name, Phase, Scheduled Date, Details, Output,
Request ID, and Republish that were entered when the concurrent program was
chosen.

Selecting a particular Request and then clicking the icon in the Details column on the
Requests page, displays a Summary of the Request, including the parameters for the
concurrent program request, notification recipients, printing parameters, and
diagnostics. Click View Log to see the log file for the request.

View Concurrent Program

C-30 Oracle Configurator Implementation Guide

CZ Subschemas D-1

D
CZ Subschemas

D.1 Oracle Configurator Subschemas
The following sections list the tables in each subschema. For detailed information
about these and other tables, see the CZ eTRM on Metalink, Oracle’s technical support
Web site.

D.1.1 ADMN Administrative Tables
These tables are uses for customizable site parameters and auditing information.

CZ_DB_LOGS
CZ_DB_SETTINGS
CZ_DB_SIZES

D.1.2 CNFG Configuration Tables
These tables hold configuration information.

CZ_CONFIG_ATTRIBUTES
CZ_CONFIG_CONTENTS_V
CZ_CONFIG_DETAILS_V
CZ_CONFIG_EXT_ATTRIBUTES
CZ_CONFIG_HDRS
CZ_CONFIG_HDRS_V
CZ_CONFIG_INPUTS
CZ_CONFIG_ITEMS
CZ_CONFIG_ITEMS_V
CZ_CONFIG_MESSAGES
CZ_CONFIG_MESSAGES_V
CZ_CONFIG_USAGES

D.1.3 ITEM Item-Master Tables
These tables hold Item information that is used to build a Model.

CZ_IMP_ITEM_MASTER
CZ_IMP_ITEM_PROPERTY_VALUE
CZ_IMP_ITEM_TYPE
CZ_IMP_ITEM_TYPE_PROPERTY
CZ_IMP_PROPERTY
CZ_ITEM_MASTERS

Oracle Configurator Subschemas

D-2 Oracle Configurator Implementation Guide

CZ_ITEM_PROPERTY_VALUES
CZ_ITEM_TYPES
CZ_ITEM_TYPE_PROPERTIES
CZ_PROPERTIES

D.1.4 LCE Logic for Configuration Tables
These tables hold the generated logic for a Model.

CZ_LCE_CLOBS
CZ_LCE_HEADERS
CZ_LCE_LINES
CZ_LCE_LOAD_SPECS
CZ_LCE_OPERANDS
CZ_LCE_TEXTS

D.1.5 PB Publication Tables
These tables hold information that is used when publishing a Model.

CZ_EFFECTIVITY_SETS
CZ_EXT_APPLICATIONS
CZ_EXT_APPLICATIONS_V
CZ_MODEL_PUBLICATIONS
CZ_MODEL_USAGES
CZ_PB_CLIENT_APPS
CZ_PB_LANGUAGES
CZ_PB_MODEL_EXPORTS
CZ_PB_TEMP_IDS
CZ_PUBLICATION_USAGES
CZ_SRC_MODEL_PUBLICATIONS_V

D.1.6 PRC Pricing Tables
These tables are used to pass pricing and configuration information to a PL/SQL
callback procedure that is used for calculating ATP (availability-to-promise).

CZ_ATP_REQUESTS
CZ_PRICING_STRUCTURES

D.1.7 PROJ Project Structure Tables
These tables are used to store project information in Oracle Configurator Developer for
building configuration models.

CZ_COMMON_CHILDNDPROPS_V
CZ_CONVERSION_RELS_V
CZ_DATA_TYPES_V
CZ_DEVL_PROJECTS
CZ_EXPLMODEL_NODES_V
CZ_EXPLNODES_WITHIMAGES_V
CZ_FUNC_COMP_SPECS
CZ_IMP_DEVL_PROJECT
CZ_IMP_MODEL_REF_EXPLS
CZ_IMP_PS_NODES
CZ_MODELS_V
CZ_MODEL_ARCHIVES_V
CZ_MODEL_BOMREF_COUNTS_V

Oracle Configurator Subschemas

CZ Subschemas D-3

CZ_MODEL_REF_EXPLS
CZ_NODE_CAPTION_PROPERTIES_V
CZ_NODE_JAVA_PROPERTIES_V
CZ_NODE_NO_PROPERTIES_V
CZ_NODE_RULE_PROPERTIES_V
CZ_NODE_USER_PROPERTIES_V
CZ_POPULATORS
CZ_PSNODE_REFRULE_IMAGES_V
CZ_PSNODE_REFUI_IMAGES_V
CZ_PSNODE_RULE_REFS_V
CZ_PSNODE_WITH_UIREFS_V
CZ_PS_NODES
CZ_PS_PROP_VALS
CZ_SRC_DEVL_PROJECTS_V
CZ_SYSTEM_PROPERTIES_V
CZ_SYSTEM_PROPERTY_RELS_V
CZ_TEMPLATE_DEFS_V
CZ_TERMINATE_MSGS
CZ_TERMINATE_MSGS_V
CZ_TGT_MODEL_PUBLICATIONS_V

D.1.8 RP Repository Tables
These tables are used for actions performed in the Repository as well as references to
Models, Effectivity Sets, and Usages.

CZ_ACCESS_SUMMARY_LKV
CZ_ACTIONDISPLAYUPDT_LKV
CZ_ACTIONMODELINTER_LKV
CZ_ACTIONNAV_LKV
CZ_ACTIONRULENODES_LKV
CZ_ACTIONSESSIONCTRL_LKV
CZ_ACTIONSONMODELNODES_LKV
CZ_ACTIONSONREPOSITORYN_LKV
CZ_ACTIONTYPEGROUP_LKV
CZ_AMPM_LKV
CZ_ANYALLTRUE_LKV
CZ_ARCHIVES
CZ_ARCHIVES_PICKER_V
CZ_ARCHIVE_REFS
CZ_ASSOCIATEDMODELNODE_LKV
CZ_BASIC_LAYOUT_REGION_LKV
CZ_CAPCONFIGSYSPROP_LKV
CZ_CAPMSGSYSPROP_LKV
CZ_CAPNODESYSPROP_LKV
CZ_CFGEXT_ARGS_SPEC_TYPE_LKV
CZ_CFGEXT_EVENT_SCOPE_LKV
CZ_CFGEXT_INST_SCOPE_LKV
CZ_CFGEXT_SYSTEM_PARAMS_LKV
CZ_CFG_SAVEASBEHAVIOR_LKV
CZ_CFG_SEARCHCRITERIA_LKV
CZ_COMPAT_TEMPL_SIGS_V
CZ_COPYDESTINATION_LKV
CZ_COPYSOURCE_LKV
CZ_CREATEOPTIONPSNODETY_LKV
CZ_CREATEPSNODEPSNODETY_LKV

Oracle Configurator Subschemas

D-4 Oracle Configurator Implementation Guide

CZ_CREATEREPOSITORYOBJE_LKV
CZ_CREATERULEOBJECT_LKV
CZ_DATATYPE_LKV
CZ_DETAILEDRULETYPES_LKV
CZ_DETLSELECTIONSTATE_LKV
CZ_EFFECTIVITYMETHODS_LKV
CZ_EFFECTIVITYTYPE_LKV
CZ_EFFSETS_PICKER_V
CZ_EVENTTYPES_LKV
CZ_EXNEXPRTYPE_LKV
CZ_FEATURETYPE_LKV
CZ_HORIZONTALALIGNMENT_LKV
CZ_HOURS_LKV
CZ_ICONLOOKUP_LKV
CZ_IMAGELOOKUPS_V
CZ_ITEMMASTEROPS_LKV
CZ_ITEMTYPEOPERATOR_LKV
CZ_ITEMTYPE_LKV
CZ_JAVASYSPROPVALS_LKV
CZ_LAYOUTREGIONS_LKV
CZ_LAYOUT_UI_STYLE_LKV
CZ_LISTLAYOUTREGIONS_LKV
CZ_LOCK_HISTORY
CZ_LOGICRULE_LKV
CZ_LOOKUP_VALUES
CZ_LOOKUP_VALUES_VL
CZ_MDLNODE_CPDST_LKV
CZ_MDLNODE_CPSRC_LKV
CZ_MENUITEMTYPES_LKV
CZ_MENUTYPES_LKV
CZ_MINUTES_LKV
CZ_MODEL_REFERENCES_PICKER_V
CZ_MSGLISTLAYOUTREGIONS_LKV
CZ_NODEINSTANTIABILITY_LKV
CZ_NODELISTLAYOUTREGIONS_LKV
CZ_NODELIST_LAYOUT_REGION_LKV
CZ_OTHERCONTENT_LKV
CZ_PROPERTY_PICKER_V
CZ_PSNODERELATION_LKV
CZ_PSNODETYPE_LKV
CZ_PUBLICATIONMODE_LKV
CZ_RECALCULATEPRICES_LKV
CZ_REPOSCREATEOPS_LKV
CZ_REPOSITORYCOPYDESTIN_LKV
CZ_REPOSITORYCOPYMODELO_LKV
CZ_REPOSITORY_MAIN_HGRID_V
CZ_REPOS_TREE_V
CZ_RPOBJECTTYPES_LKV
CZ_RP_BOM_MODELS_V
CZ_RP_DIRECTORY_V
CZ_RP_EFF_DIRECTORY_V
CZ_RP_ENTRIES
CZ_RP_PRJ_DIRECTORY_V
CZ_RP_USG_DIRECTORY_V
CZ_RTCONDCOMPAR_LKV

Oracle Configurator Subschemas

CZ Subschemas D-5

CZ_RTCONDOBJSETTINGS_LKV
CZ_RULERADIOGROUP_LKV
CZ_RULETYPECODES_LKV
CZ_RULEUNSATMESSAGECHOI_LKV
CZ_RULEVIOLATIONMESSAGE_LKV
CZ_SERVERS
CZ_SIMPLECONTROLS_LKV
CZ_SORTORDER_LKV
CZ_SOURCEENTITYTYPES_LKV
CZ_SUBTYPEBOMMODEL_LKV
CZ_SUBTYPEBOMOPTIONCLAS_LKV
CZ_SUBTYPEBOMSTDITEM_LKV
CZ_SUBTYPECOMPONENT_LKV
CZ_SUBTYPEFEATURE_LKV
CZ_SUBTYPEFEATUREGROUP_LKV
CZ_SUBTYPEOPTION_LKV
CZ_SUBTYPEPRODUCT_LKV
CZ_SUBTYPERESOURCE_LKV
CZ_SUBTYPETOTAL_LKV
CZ_UCTMESSAGETYPE_LKV
CZ_UCT_PARNTCONTTY_LKV
CZ_UI_HGRID_ACTIONS_LKV
CZ_UI_MSTTMP_BOMCON_UILAY_LKV
CZ_UI_MSTTMP_CNTRLLAYOUT_LKV
CZ_UI_MSTTMP_NBOMCON_UILAY_LKV
CZ_UI_MSTTMP_PAGINATION_LKV
CZ_UI_MSTTMP_PAG_CMP_LKV
CZ_UI_MSTTMP_PAG_DDNCTRL_LKV
CZ_UI_MSTTMP_PAG_NOC_LKV
CZ_UI_MSTTMP_PAG_REF_LKV
CZ_UI_MSTTMP_PRINAV_LKV
CZ_UI_MSTTMP_SUPDIS_LKV
CZ_UI_MSTTMP_TMPUSG_LKV
CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV
CZ_USAGES_PICKER_V
CZ_VALIDRESULTFORCOMPON_LKV
CZ_VALIDRESULTFOROPTFEA_LKV
CZ_VERTICALALIGNMENT_LKV
CZ_VIEWBYSELECTION_LKV

D.1.9 RULE Rule Tables
These tables hold Rule information and information on the participants in a rule.

CZ_COMBO_FEATURES
CZ_COMPATCELL_NODE_V
CZ_DES_CHART_CELLS
CZ_DES_CHART_COLUMNS
CZ_DES_CHART_FEATURES
CZ_EXPRESSION_NODES
CZ_FILTER_SETS
CZ_GRID_CELLS
CZ_GRID_COLS
CZ_GRID_DEFS
CZ_IMP_RULES
CZ_MODELRULEFOLDER_IMAGES_V

Oracle Configurator Subschemas

D-6 Oracle Configurator Implementation Guide

CZ_MODEL_ALL_RULEFOLDERS_V
CZ_NODETYPE_SYSPROPS_V
CZ_NODE_USAGE_IN_RULES_V
CZ_PSN_TYPED_RULE_REFS_V
CZ_RULES
CZ_RULES_WITH_ARGS_V
CZ_RULETEMPLS_BYLABEL_V
CZ_RULE_EXPRDETLS_V
CZ_RULE_EXPRESSION_V
CZ_RULE_FOLDERS
CZ_RULE_PARTICIPANTS_V
CZ_RUL_TYPEDPSN_V
CZ_TYPED_RULES_V

D.1.10 TXT - Text Tables
These tables hold the text that is displayed during runtime Configurator as well as
MLS information.

CZ_IMP_LOCALIZED_TEXTS
CZ_LOCALIZED_TEXTS

D.1.11 TYP - Data Typing
These tables hold the various types of model nodes, the structure of rule templates,
and the elements in user interfaces.

CZ_DATA_SUBTYPES_V
CZ_NODETYPE_PROPERTIES_V
CZ_NODE_DISPCOND_PROPERTIES_V
CZ_PARENT_CHILD_RELS_V
CZ_TYPE_RELATIONSHIPS
CZ_VALID_RESULT_TYPES_V

D.1.12 UI User Interface Tables
These tables hold information that is used in the User Interfaces, such as image
information, messages.

CZ_JRAD_CHUNKS
CZ_PS_UI_CTRL_MAPS
CZ_PSNODETYPE_IMAGES_V
CZ_RULETYPE_IMAGES_V
CZ_UIDEF_SIGNATURE_TEMPLS_V
CZ_UIELEMENT_IMAGES_V
CZ_UITEMPLS_FOR_PSNODES_V
CZ_UITEMPL_CONTROLS_V
CZ_UITEMPL_MESSAGES_V
CZ_UITEMPL_UTILITY_V
CZ_UI_ACTIONS
CZ_UI_COLLECT_TMPLS_V
CZ_UI_CONT_TYPE_TEMPLS
CZ_UI_CONT_TYPE_TEMPLS_VV
CZ_UI_DEFS
CZ_UI_ELEMENT_ATTRIBUTES_V
CZ_UI_IMAGES
CZ_UI_NODES

Oracle Configurator Subschemas

CZ Subschemas D-7

CZ_UI_NODE_PROPS
CZ_UI_PAGES
CZ_UI_PAGE_ELEMENTS
CZ_UI_PAGE_REFS
CZ_UI_PAGE_SETS
CZ_UI_PATHED_IMAGES_V
CZ_UI_PROPERTIES
CZ_UI_REFS
CZ_UI_REF_TEMPLATES
CZ_UI_TEMPLATES_VV
CZ_UI_TEMPLATES
CZ_UI_TYPEDPSN_V
CZ_UI_XMLS

D.1.13 XFR Transfer Specifications and Control Tables
These tables contain information that is used during import.

CZ_XFR_FIELDS
CZ_XFR_PROJECT_BILLS
CZ_XFR_RUN_INFOS
CZ_XFR_RUN_RESULTS
CZ_XFR_STATUS_CODES
CZ_XFR_TABLES

Oracle Configurator Subschemas

D-8 Oracle Configurator Implementation Guide

Code Examples E-1

E
Code Examples

This chapter contains code examples that support other chapters of this document.
These examples are fuller and longer than the examples provided in the rest of this
document, which are often fragments. See the cited background sections for details.

You should consult these other documents for details on the tasks described in this
section:

■ For information on how to write and compile Configurator Extensions, and on
how to incorporate them into your configuration model, see the Oracle Configurator
Extensions and Interface Object Developer’s Guide.

■ For information on how to install Configurator Extensions, see the Oracle
Configurator Installation Guide.

■ For an explanation of updating configurations, see the Oracle Configurator
Developer User’s Guide.

■ For an details on how to build a configuration model that enables you to update
configurations, see the Oracle Configurator Developer User’s Guide.

E.1 Pricing and ATP Callback Procedures
This appendix contains minimal examples of PL/SQL procedures you might write to
use the OC callback interface for pricing and ATP procedures.

See the following sections for background:

■ Chapter 13, "Pricing and ATP in Oracle Configurator" on page 13-1

■ Section 13.2.2, "Pricing Callback Interface" on page 13-3

■ Section 13.2.3, "ATP Callback Interface" on page 13-6

■ Section 9.3.6, "Pricing Parameters" on page 9-11

■ Section 9.3.7, "ATP Parameters" on page 9-11

Table E–1 Code Examples Provided

Purpose of Example Example

Section E.1, "Pricing and ATP
Callback Procedures"

Example E–1, "Example of Multiple-item Callback
Pricing Procedure"

Example E–2, "Example of Callback ATP Procedure"

Section E.2, "Implementing a Return
URL Servlet"

Example E–3, "Example Return URL Servlet
(Checkout.java)"

Implementing a Return URL Servlet

E-2 Oracle Configurator Implementation Guide

Example E–1 Example of Multiple-item Callback Pricing Procedure

PROCEDURE price_multiple_items (p_configurator_session_key IN VARCHAR2,
 p_price_type IN VARCHAR2,
 p_total_price OUT NUMBER) AS
BEGIN
 update cz_pricing_structures set list_price = 3.0*seq_nbr,
 selling_price = 2.0*seq_nbr,
 where configurator_session_key =
 p_configurator_session_key;

-- calculation using pricing table for storage
 select sum(selling_price) into p_total_price from cz_pricing_structures
 where configurator_session_key = p_configurator_session_key;

 -- hard-coded price amount
 -- p_total_price := 343.00;

END price_multiple_items;

Example E–2 Example of Callback ATP Procedure

 PROCEDURE call_atp (p_config_session_key IN VARCHAR2,
 p_warehouse_id IN NUMBER,
 p_ship_to_org_id IN NUMBER,
 p_customer_id IN NUMBER,
 p_customer_site_id IN NUMBER,
 p_requested_date IN DATE,
 p_ship_to_group_date OUT DATE) IS
 BEGIN

 update cz_atp_requests set ship_to_date = sysdate-10
 where configurator_session_key
 = p_config_session_key;

 p_ship_to_group_date := sysdate;
 END call_atp;

E.2 Implementing a Return URL Servlet
Example E–3 is the complete source code for Checkout.java, which you can use as a
template for constructing your own return URL servlet.

The Java servlet shown here obtains the value of the valid_configuration element
from the configuration outputs element of the termination message and displays it in
an HTML frame that takes the place of the Oracle Configurator window after your
user has closed the window and saved the results of the configuration session.

See the following sections for background:

■ Section 10.6, "The Return URL" on page 10-10

■ Section 10, "Session Termination" on page 10-1

■ Section 10.3, "Submission" on page 10-3

■ Section 10.3.1, "Configuration Status" on page 10-4

■ Section 10.3.2, "Configuration Outputs" on page 10-6

Implementing a Return URL Servlet

Code Examples E-3

The parts of the code that you should customize to work with a different configuration
output element than valid_configuration are typographically emphasized.

Note the use of top.location in the example to cause the servlet output to replace
the contents of the runtime Oracle Configurator window.

Example E–3 Example Return URL Servlet (Checkout.java)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import oracle.apps.cz.common.XmlUtil;
import oracle.xml.parser.v2.XMLDocument;
import org.xml.sax.SAXException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class Checkout extends HttpServlet {

 // Responds to the UiServlet request containing the <terminate> XML message
 public void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
 String terminateString = request.getParameter("XMLmsg");
 XMLDocument terminateDoc;
 try {
 terminateDoc = XmlUtil.parseXmlString(terminateString);
 } catch (SAXException se) {
 throw new ServletException(se.getMessage());
 }
 String validConfig = getValidConfig(terminateDoc);
 System.err.println("configuration valid?: " + validConfig);

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<script language=\"javascript\">");
 out.println("top.location = \"/servlets/Checkout?ValidConfig=" + validConfig + "\"");
 out.println("</script>");
 out.println("</html>");
 }

 // Responds to the secondary request for the page to replace the content frame
 // containing the ValidConfig
 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
 String validConfig = request.getParameter("ValidConfig");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Checked Out with Valid Configuration</title></head>");
 out.println("<body>");
 out.println("Configuration Valid?: " + validConfig);
 out.println("</body>");
 out.println("</html>");
 }

 String getValidConfig(XMLDocument doc) {
 return getTagValue(doc, "valid_configuration", null); // get element from termination msg
 }

Implementing a Return URL Servlet

E-4 Oracle Configurator Implementation Guide

 String getTagValue(XMLDocument doc, String tagName, String defaultValue) {
 Node n = doc.getDocumentElement();
 if (n != null) {
 NodeList nl = n.getChildNodes();
 if (nl != null) {
 for (int i = 0; i < nl.getLength(); i++) {
 Node cn = nl.item(i);
 if (cn.getNodeName().equals(tagName)) {
 NodeList cnl = cn.getChildNodes();
 if (cnl != null) {
 return cnl.item(0).getNodeValue();
 }
 }
 }
 }
 }
 return defaultValue;
 }
}

Glossary

This glossary contains definitions that you may need while working with Oracle
Configurator.

API

Application Programming Interface

applet

A Java application running inside a Web browser. See also Java and servlet.

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that
determines which Java classes are loaded for Configurator Extensions and in what
order.

argument

A data value or object that is passed to a method or a Java class so that the method can
operate.

ATO

Assemble to Order

ATP

Available to Promise

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

bill of material

A list of Items associated with a parent Item, such as an assembly, and information
about how each Item relates to that parent Item.

Bills of Material

The application in Oracle Applications in which you define a bill of material.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.
Glossary-1

BOM

See bill of material.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM
Standard Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO rules, and other
data are also imported into Configurator Developer. In Configurator Developer, you
can extend the structure of the BOM Model, but you cannot modify the BOM Model
itself or any of its attributes.

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Model created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

bug

See defect.

build

A specific instance of an application during its construction. A build must have an
install program early in the project so that application implementers can unit test their
latest work in the context of the entire available application.

CDL

See Constraint Definition Language.

CIO

See Oracle Configuration Interface Object (CIO).

command event

An event that is defined by a character string, which is considered the command for
which listeners are listening.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to
determine the selection state of a logical Item (Option, Boolean Feature, or
List-of-Options Feature) based on a comparison of two numeric values (numeric
Features, Totals, Resources, Option counts, or numeric constants). The numeric
Glossary-2

values being compared can be computed or they can be discrete intervals in a
continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,
Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility
relationship where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model. Corresponds to one UI screen of selections in a
runtime Oracle Configurator.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

concurrent program

Executable code (usually written in SQL*Plus or Pro*C) that performs the function(s)
of a requested task. Concurrent programs are stored procedures that perform actions
such as generating reports and copying data to and from a database.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration engine

The part of the runtime Oracle Configurator that uses configuration rules to validate
a configuration. Compare generated logic.

Configuration Interface Object

See Oracle Configuration Interface Object (CIO).

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime
Oracle Configurator window. See also model.
Glossary-3

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which
end users make selections to configure an orderable product. A configuration session
is limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so
that the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection between client and database that allows data communication.

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node’s parent to a referenced Model.

Constraint Definition Language

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models containing connectivity and
trackable components. Configurations created from Container Models can be tracked
and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total
value. See also Total.
Glossary-4

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CTO

Configure to Order

customer

The person for whom products are configured by end users of the Oracle
Configurator or other ERP and CRM applications. Also the end users themselves
directly accessing Oracle Configurator in a Web store or kiosk.

customer requirements

The needs of the customer that serve as the basis for determining the configuration of
products, systems, and services. Also called needs assessment. See guided buying or
selling.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well
as specific tables used during the construction of the configurator.

data import

Populating the CZ schema with enterprise data from ERP or legacy systems via
import tables.

data source

A programmatic reference to a database. Referred to by a data source name (DSN).

DBMS

Database Management System

default

A predefined value. In a configuration, the automatic selection of an option based on
the preselection rules or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state
of Features or Options in a default relation to other Features and Options. For
example, if A Defaults B, and you select A, B becomes Logic True (selected) if it is
available (not Logic False).

defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a bug.
Glossary-5

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

developer

The person who uses Oracle Configurator Developer to create a configurator. See also
implementer and user.

Developer

The tool (Oracle Configurator Developer) used to create configuration models.

DHTML

Dynamic Hypertext Markup Language

discontinued item

A discontinued item is one that exists in an installed configuration of a component (as
recorded in Oracle Install Base), but has been removed from the instance of the
component being reconfigured, either by deletion or by deselection.

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly
accessing the application via a Web browser or kiosk. Compare user.

enterprise

The systems and resources of a business.

environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure
inside which a listener listens for an event is called the event binding scope. The part
of model structure that is the source of an event is called the event execution scope. See
also command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User
Glossary-6

False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Negates relation.

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

functional specification

Document describing the functionality of the application based on user requirements.

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided
selling questions trigger configuration rule that automatically select some product
options and exclude others based on the end user’s responses.

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

HTML

Hypertext Markup Language

implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed configuration
application. The implementation stage includes gathering requirements, defining test
cases, designing the application, constructing and testing the application, and
delivering it to end users. See also developer and user.

implementer

The person who uses Oracle Configurator Developer to build the model structure,
rules, and UI customizations that make up a runtime Oracle Configurator. Commonly
also responsible for enabling the integration of Oracle Configurator in a host
application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For
example, if A Implies B, and you select A, B becomes Logic True. If you deselect A (set
to User False), there is no effect on B, meaning it could be User or Logic True, User or
Logic False, or Unknown. See Requires relation.
Glossary-7

import server

A database instance that serves as a source of data for Oracle Configurator’s
Populate, Refresh, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

import tables

Tables mirroring the CZ schemaItem Master structure, but without integrity
constraints. Import tables allow batch population of the CZ schema’s Item Master.
Import tables also store extractions from Oracle Applications or legacy data that
create, update, or delete records in the CZ schema Item Master.

initialization message

The XML message sent from a host application to the Oracle Configurator Servlet,
containing data needed to initialize the runtime Oracle Configurator. See also
termination message.

Instance

An Oracle Configurator Developer attribute of a component’s node that specifies a
minimum and maximum value. See also instance.

instance

A runtime occurrence of a component in a configuration. See also instantiate. Compare
count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component
in the runtime user interface of a configuration model.

integration

The process of combining multiple software components and making them work
together.

integration testing

Testing the interaction among software programs that have been integrated into an
application or system. Also called system testing. Compare unit test.

item

A product or part of a product that is in inventory and can be delivered to customers.

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either
entered manually in Oracle Configurator Developer or imported from Oracle
Applications or a legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.
Glossary-8

Java

An object-oriented programming language commonly used in internet applications,
where Java applications run inside Web browsers and servers. Used to implement the
behavior of Configurator Extensions. See also applet and servlet.

Java class

The compiled version of a Java source code file. The methods of a Java class are used
to implement the behavior of Configurator Extensions.

JavaServer Pages

Web pages that combine static presentation elements with dynamic content that is
rendered by Java servlets.

JSP

See JavaServer Pages.

legacy data

Data that cannot be imported without creating custom extraction programs.

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

load

Storing the configuration model data in the Oracle Configurator Servlet on the Web
server. Also, the time it takes to initialize and display a configuration model if it is not
preloaded.

The burden of transactions on a system, commonly caused by the ratio of user
connections to CPUs or available memory.

log file

A file containing errors, warnings, and other information that is output by the running
application.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the
logical state (User or Logic True, User or Logic False, or Unknown) of Features and
Options in the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

maintenance

The effort of keeping a system running once it has been deployed, through defect
fixes, procedure changes, infrastructure adjustments, data replication schedules, and
so on.
Glossary-9

Metalink

Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

method

A function that is defined in a Java class. Methods perform some action and often
accept parameters.

Model

The entire hierarchical "tree" view of all the data required for configurations,
including model structure, variables such as Resources and Totals, and elements in
support of intermediary rules. Includes both imported BOM Models and Models
created in Configurator Developer. May consist of BOM Option Classes and BOM
Standard Items.

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

model-driven UI

The graphical views of the model structure and rules generated by Oracle
Configurator Developer to present end users with interactive product selection based
on configuration models.

model structure

Hierarchical "tree" view of data composed of elements (Models, Components,
Features, Options, BOM Models, BOM Option Class nodes, BOM Standard Item
nodes, Resources, and Totals). May include reusable components (References).

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic
state of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). See Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents
a Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item node.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes
from.

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.
Glossary-10

OC

See Oracle Configurator.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configuration Interface Object (CIO)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the
runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator architecture

The three-tier runtime architecture consists of the User Interface, the generated logic,
and the CZ schema. The application development architecture consists of Oracle
Configurator Developer and the CZ schema, with test instances of a runtime Oracle
Configurator.

Oracle Configurator Developer

The suite of tools in the Oracle Configurator product for constructing and maintaining
configurators.

Oracle Configurator engine

The part of the Oracle Configurator product that validates runtime selections. See also
generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering Legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by
end users to make the selections of a configuration.
Glossary-11

performance

The operation of a product, measured in throughput and other data.

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

preselection

The default state in a configurator that defines an initial selection of Components,
Features, and Options for configuration.

A process that is implemented to select the initial element(s) of the configuration.

product

Whatever is ordered and delivered to customers, such as the output of having
configured something based on a model. Products include intangible entities such as
services or contracts.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model,
Oracle Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

prototype

A construction technique in which a preliminary version of the application, or part of
the application, is built to facilitate user feedback, prove feasibility, or examine other
implementation issues.

PTO

Pick to Order

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same
configuration model, but each publication corresponds to only one Model and User
Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and
running an Oracle Applications concurrent process to copy data to a specific database.

RDBMS

Relational Database Management System
Glossary-12

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another
Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options.
For example, if A Requires B, and if you select A, B is set to Logic True (selected).
Similarly, if you deselect A, B is set to Logic False (deselected). See Implies relation.

resource

Staff or equipment available or needed within an enterprise.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can
have an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

reusable component

See reference and model structure.

reusability

The extent to and ease with which parts of a system can be put to use in other systems.

rules

Also called business rules or configuration rule. In the context of Oracle Configurator
and CDL, a rule is not a "business rule." Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and
Numeric Rule.

runtime

The environment and context in which applications are run, tested, or used, rather
than developed.

The environment in which an implementer (tester), end user, or customer configures
a product whose model was developed in Oracle Configurator Developer. See also
configuration session.
Glossary-13

schema

The tables and objects of a data model that serve a particular product or business
process. See also CZ schema.

server

Centrally located software processes or hardware, shared by clients.

servlet

A Java application running inside a Web server. See also Java, applet, and Oracle
Configurator Servlet.

solution

The deployed system as a response to a problem or problems.

SQL

Structured Query Language

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle
Configurator Constraint Definition Language (text) rather than interactively
assembling the rule’s elements.

system

The hardware and software components and infrastructure integrated to satisfy
functional and performance requirements.

termination message

The XML message sent from the Oracle Configurator Servlet to a host application
after a configuration session, containing configuration outputs. See also initialization
message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

unit test

Execution of individual routines and modules by the application implementer or by
an independent test consultant to find and resolve defects in the application. Compare
integration testing.
Glossary-14

update

Moving to a new version of something, independent of software release. For instance,
moving a production configurator to a new version of a configuration model, or
changing a configuration independent of a model update.

upgrade

Moving to a new release of Oracle Configurator or Oracle Configurator Developer.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

user requirements

A description of what the configurator is expected to do from the end user's
perspective.

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

variable

Parts of the Model that are represented by Totals, Resources, or numeric Features.

verification

Tests that check whether the result agrees with the specification.

Web

The portion of the Internet that is the World Wide Web.

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

XML

Extensible Markup Language, a highly flexible markup language for transferring data
between Web applications. Used for the initialization message and termination
message of the Oracle Configurator Servlet.
Glossary-15

Glossary-16

Index-1

Index

A
Access control

Function security, 15-1
Active Model

See configuration models
Administration

Oracle Configurator ADMN subschema, D-1
ADMN subschema

CZ_DB_LOGS, D-1
CZ_DB_SETTINGS, D-1
CZ_DB_SIZES, D-1

Advanced Pricing
integration, 13-9
pricing method, 9-11

alt_database_name (initialization parameter), 9-14
AltBatchValidateURL

CZ_DB_SETTINGS, 4-8
usage, 4-9

AOL/J (Applications Object Library/Java classes)
connection pooling, 20-3
security, 20-6

Apache
servlet engine

number of instances, 20-2
setup, 1-4

Apache Web listener
load balance

deployment task, 1-6
API

version numbers, 18-6
APIs

COMMON_BILL_FOR_ITEM, 17-9
CONFIG_MODEL_FOR_ITEM, 17-10
CONFIG_MODEL_FOR_PRODUCT, 17-14
CONFIG_MODELS_FOR_ITEMS, 17-12
CONFIG_MODELS_FOR_PRODUCTS, 17-16
CONFIG_UI_FOR_ITEM, 17-18
CONFIG_UI_FOR_ITEM_LF, 17-20
CONFIG_UI_FOR_PRODUCT, 17-22
CONFIG_UIS_FOR_ITEMS, 17-24
CONFIG_UIS_FOR_PRODUCTS, 17-26
COPY_CONFIGURATION, 17-28
COPY_CONFIGURATION_AUTO, 17-32, 17-34
CREATE_JRAD_UI, 18-13
CREATE_RP_FOLDER, 18-9

CREATE_UI, 18-11
CZ_CONFIG_API_PUB.COPY_

CONFIGURATION, 17-30
CZ_CONFIG_API_PUB.COPY_

CONFIGURATION_AUTO, 17-34
CZ_CONFIG_API_PUB.VERIFY_

CONFIGURATION, 17-56
DEEP_MODEL_COPY, 18-15
DEFAULT_NEW_CFG_DATES, 17-36
DEFAULT_RESTORED_CFG_DATES, 17-37
DELETE_CONFIGURATION, 17-39
EXECUTE_POPULATOR, 18-17
GENERATE_LOGIC, 18-21
ICX_SESSION_TICKET, 17-41
IMPORT_GENERIC, 18-24
IMPORT_SINGLE_BILL, 18-23
MODEL_FOR_ITEM, 17-42
MODEL_FOR_PUBLICATION_ID, 17-44
PUBLICATION_FOR_ITEM, 17-45
PUBLICATION_FOR_PRODUCT, 17-47
PUBLICATION_FOR_SAVED_CONFIG, 17-49
PUBLISH_MODEL, 18-26
REFRESH_JRAD_UI, 18-29
REFRESH_SINGLE_MODEL, 18-27
REFRESH_UI, 18-28
REPOPULATE, 18-30
UI_FOR_ITEM, 17-51
UI_FOR_PUBLICATION_ID, 17-53
VALIDATE, 17-54

ApJServVMTimeout, 1-7
applicability parameters

Applications, 16-7
calling_application_id, 17-5
config_lookup_date, 17-5
Date Range, 16-7
definition and listing, 16-6
initialization message, 17-5
language, 17-5
Languages, 16-7
Mode, 16-6
product_key, 17-5
publication_mode, 17-6
publishing, 9-10
usage_name, 17-6
Usages, 16-7

application program interfaces

Index-2

See APIs
APPLICATION_ID (database column)

host application, 9-14, 9-15
application_id (initialization parameter), 9-14
Applications

applicability parameter
CZ_EXT_APPLICATIONS, 16-7

calling_application_id (initialization
parameter), 9-15

applications
stateful, 20-5

apps_connection_info (initialization
parameter), 9-14

architecture
development three tier, 2-8
multitiered, 2-7
Oracle Configurator ATP, 13-2
Oracle Configurator Developer, 2-1
Oracle Configurator pricing, 13-2
runtime four tiers, 2-7
runtime Oracle Configurator, 2-1
runtime three tiers, 2-8

ATO (Assemble To Order)
implicit rules when importing, 5-4
preparing the BOM, 5-6

ATP (Available To Promise)
architecture, 13-1
creating BOM Models, 5-7
custom Web application, 13-1
initialization parameters

atp_package_name, 9-12
configurator_session_key, 9-12
customer_id, 9-12
customer_site_id, 9-12
get_atp_dates_proc, 9-12
requested_date, 9-12
ship_to_org_id, 9-12
warehouse_id, 9-12

atp_date (XML element), 10-7
atp_package_name (initialization parameter), 9-12,

9-15
atp-rollup-date (XML element), 10-7
Available To Promise

See ATP (Available To Promise)

B
BadItemPropertyValue

CZ_DB_SETTINGS, 4-8
disposition codes, 4-10
usage, 4-9

batch validation
calling, 11-1
configured item, 21-3
CZ: Fail BV if Configuration Changed, 11-8
CZ: Fail BV If Input Quantities Not

Maintained, 11-8
CZ: Skip Validation Procedure, 11-8
definition, 2-3, 11-1
message, 11-1, 21-4

tasks performed, 11-1
UtlHttpTransferTimeout, 4-16
VALIDATE procedure, 11-3

BatchSize
CZ_DB_SETTINGS, 4-8
usage, 4-10

bitmap files, 12-2
BLAF (browser look and feel), 9-24
BMP files

See bitmap files
BOM

data, 13-9
imported data, 5-4

BOM Allowed
importing components, 5-6

BOM Models
defining a PTO for import, 5-6
defining an ATO for import, 5-6
defining an Item Type for import, 5-6
exploding BOMs for import, 4-15
imported BOM rules, 5-4
imported data, 5-4
imported Properties, 5-6
importing

common bills, 5-16
locking Models, 5-2

Mutually Exclusive Items, 5-7
mutually exclusive rules, 5-4
NOUPDATE flag for populating and

refreshing, 4-7
ORIG_SYS_REF, 7-3
referencing a common bill, 5-16
synchronizing BOMs, 7-1

BOM Option Classes
Mutually Exclusive Items, 5-7

BOM Standard Items
definition, 5-6

BOM Synchronization
Check All Models/Bills Similarity

concurrent program, C-18
Check Model/Bill Similarity

concurrent program, C-17
concurrent programs, 7-4
CZ_DEVL_PROJECTS, 7-3
CZ_ITEM_MASTERS, 7-3
CZ_ITEM_PROPERTY_VALUES, 7-5
CZ_ITEM_TYPE_PROPERTY_VALUES, 7-5
CZ_ITEM_TYPES, 7-3
CZ_LOCALIZED_TEXTS, 7-3
CZ_MODEL_PUBLICATIONS, 7-3
CZ_PS_NODES, 7-3, 7-4
CZ_XFR_PROJECT_BILLS, 7-4
import server, 5-7
imported Properties, 7-5
MTL_SYSTEM_ITEMS, 7-2
synchronized fields, 7-3
validation criteria, 7-2

BOM Synchronized fields
COMPONENT_ITEM_ID (database column), 7-4
COMPONENT_SEQUENCE_ID (database

Index-3

column), 7-4
COMPONENT_SEQUENCE_PATH (database

column), 7-4
ORGANIZATION_ID (database column), 7-3
ORIG_SYS_REF (database column), 7-3
PRODUCT_KEY (database column), 7-3
SOURCE_SERVER (database column), 7-4
TOP_ITEM_ID (database column), 7-3, 7-4

BOM: Configurator URL of UI Manager
host application, 2-3
profile option, 19-1

BOM_EXPLOSIONS (database table)
BOM_BILL_OF_MATERIAL, 4-15
BOM_INVENTORY_COMPONENTS, 4-15
configuration output, 10-7
data refresh, 4-15
DESCRIPTION field in CZ_INTL_TEXTS, 4-15

bom_item_type (XML element), 10-7
BOM_REVISION

CZ_DB_SETTINGS, 4-8
usage, 4-10

bom-quantity (XML element), 10-7
browser

configurating for MLS, 1-1
deployment tasks, 1-6
requirements for DHTML configurator, 1-6

C
caching

connection cache, 20-3
of list prices, 13-7

call_atp() procedure, 13-6
example, E-2

callback interface
ATP example, 13-7
ATP parameters, 9-11, 13-6
Multiple Items parameters, 13-4
pricing example, 13-5
pricing parameters, 9-11
pricing procedure example, E-2
See also initialization

parameters
calling_application_id (applicability

parameter), 17-5
calling_application_id (initialization parameter), 9-5,

9-15
CDL (Constrain Definition Language)

importing rules, 5-16
CIO (Configuration Interface Object)

definition, 2-5
tuning, 2-5

CLASSPATH
environment variables, 12-2

client_header (initialization parameter), 9-15
client_line (initialization parameter), 9-16
client_line_detail (initialization parameter), 9-16
CNFG subschema

CZ_ATP_REQUESTS, D-2
CZ_CONFIG_ATTRIBUTES, D-1

CZ_CONFIG_CONTENTS_V, D-1
CZ_CONFIG_DETAILS_V, D-1
CZ_CONFIG_EXT_ATTRIBUTES, D-1
CZ_CONFIG_HDRS, D-1
CZ_CONFIG_HDRS_V, D-1
CZ_CONFIG_INPUTS, D-1
CZ_CONFIG_ITEMS, D-1
CZ_CONFIG_ITEMS_V, D-1
CZ_CONFIG_MESSAGES, D-1
CZ_CONFIG_MESSAGES_V, D-1
CZ_CONFIG_USAGES, D-1
CZ_PRICING_STRUCTURES, D-2

collections
custom data type, 17-6

CommitSize
CZ_DB_SETTINGS, 4-8
usage, 4-10

common bill
importing, 5-16

COMMON_BILL_FOR_ITEM (API), 17-9
complete_configuration (XML element), 10-4
COMPONENT_CODE (database column), 10-7
component_code (XML element), 10-7, 10-8
COMPONENT_ITEM_ID (database column)

BOM synchronization, 7-4
COMPONENT_SEQUENCE_ID (database column)

BOM synchronization, 7-4
COMPONENT_SEQUENCE_PATH (database

column)
BOM synchronization, 7-4

concurrent programs
Add Application to Publication Applicability

List, C-6
Check All Models/Bills Similarity, C-18
Check Model/Bill Similarity, C-17
Define Remote Server, C-6
Disable/Enable Refresh of a Configuration

Model, C-15
editing Oracle Configurator settings, 4-7
Enable Remote Server, C-7, C-13
Enable/Disable Refresh of a Configuration

Model, 5-13
Execute Populators in Model, C-20
Import Configuration Rules, 5-17, C-15
importing configuration rules, 5-2
importing data, 5-2, 13-8
Migrate All Functional Companions, C-22
Migrate Configurator Data, C-21
Migrate Functional Companions for a Single

Model, C-23
migrating data, 5-2
Modify Configurator Parameters, C-2
Modify Server Definition, 5-7, C-13
Populate Configuration Models, C-12
Process a Single Publication, 16-10, C-11
Process Pending Publications, 16-10, C-10
Purge Configurator Import Tables, 8-2, C-4
Purge Configurator Tables, 8-2, C-3
Purge To Date Configurator Import Tables, 8-2,

C-4

Index-4

Purge To Run ID Configurator Import
Tables, 8-2, C-5

Refresh a Single Configuration Model, 5-13, C-13
Refresh All Imported Configuration

Models, C-14
Refresh All Previously Imported Models, 5-12
Requests

options, C-27
Select Tables to be Imported, C-26

responsibilities, 1-1
Select Tables to be Imported, 5-23
Setup Configurator Data Migration, C-20
Show Tables to be Imported, 5-9
Synchronize All Models, 7-4
Synchronize Cloned Source Data, C-25
Synchronize Cloned Target Data, C-24
View Configurator Parameters, C-2
View Servers, C-8
viewing requests, B-4

config_creation_date
CZ_DB_SETTINGS value, 4-9
usage in CZ_DB_SETTINGS, 4-14

config_creation_date (initialization parameter), 9-16
config_effective_date (initialization parameter), 9-16
config_effective_usage (initialization

parameter), 9-9, 9-17
CONFIG_HDR_ID (database column), 9-17
config_header_id (initialization parameter), 9-8, 9-17
config_header_id (XML element), 10-4
CONFIG_ITEM_ID (database column)

configuration output, 10-8
configuration output for parent node, 10-7
usage in pricing, 13-5

config_lookup_date (applicability parameter), 17-5
config_messages (XML element), 10-8
CONFIG_MODEL_FOR_ITEM (API), 17-10
CONFIG_MODEL_FOR_PRODUCT (API), 17-14
config_model_lookup_date (initialization

parameter), 9-17
CONFIG_MODELS_FOR_ITEMS (API), 17-12
CONFIG_MODELS_FOR_PRODUCTS (API), 17-16
config_outputs (XML element), 10-7
CONFIG_REV_NBR (database column), 9-17
config_rev_nbr (initialization parameter), 9-8, 9-17
config_rev_nbr (XML element), 10-4
config_total_price (pricing procedure

parameter), 13-3, 13-4
CONFIG_UI_FOR_ITEM (API), 17-18
CONFIG_UI_FOR_ITEM_LF (API), 17-20
CONFIG_UI_FOR_PRODUCT (API), 17-22
CONFIG_UIS_FOR_ITEMS (API), 17-24
CONFIG_UIS_FOR_PRODUCTS (API), 17-26
Configuration

Oracle Configurator CNFG subschema, D-1
configuration attributes

importing, 1-3
input, 9-15, 9-16

configuration files
cz_init.txt, 1-4

Configuration Interface Object

See CIO (Configuration Interface Object)
configuration models

communication with user interface, 2-5
Configurator Extensions, 2-6
managing saved configurations, 21-2
OC Servlet, 2-5
runtime Oracle Configurator, 2-4
saved revisions, 21-2
testing

system, 3-6
unit, 3-5

configuration outputs, 10-6
configuration session, 10-6

ATP dates, 13-6
batch_validate, 11-2
configuration messages, 10-8
configurator_session_key, 9-17
connection pooling, 20-3
end user access, 2-2
ICX_SESSION_TICKET, 17-41
initialization message, 2-4, 9-2
log files, 9-6
model quantity change, 9-19
pricing, 13-5
return URL, 9-10, 9-23
runtime pricing behavior, 13-7
saving a configuration, 21-2
termination message, 9-11, 10-5
UI read only, 9-22

configuration tables
ADMN subschema, D-1
CNFG subschema, D-1
ITEM subschema, D-1
LCE subschema, D-2
PB subschema, D-2
PRC subschema, D-2
PROJ subschema, D-2
RULE subschema, D-5
UI subschema, D-6

configurations
canceled, 21-2
complete, 21-2
incomplete, 21-2
inputs, 21-2
invalid, 21-1
new, 21-2
restoring saved configurations

determining values, 17-37
Instantiability changes, 21-5
orders from previous publications, 16-14
state, 21-2

valid, 21-1
Configurator

See also DHTML Configurator
See also Java applet
See also runtime Oracle Configurator

Configurator Extensions
concurrent programs for migrating to, C-22
importing, 1-3, 5-2
tuning, 2-5

Index-5

configurator_session_key (ATP procedure
parameter), 13-6

CONFIGURATOR_SESSION_KEY (database
column), 13-4

configurator_session_key (initialization
parameter), 9-11, 9-12, 9-17

configurator_session_key (pricing procedure
parameter), 13-3

Configure button, 9-2, 13-2
configuring

usage of initialization parameters, 9-21
context_org_id (initialization parameter), 9-9, 9-17
control tables

role in importing data, 4-6
See also CZ_XFR control tables

cookies
DHTML configurator requirement, 1-6

COPY_CONFIGURATION (API), 17-28, 17-30
COPY_CONFIGURATION_AUTO (API), 17-32,

17-34
copying

host application entity, 21-5
Models

programmatically, 18-15
publications, 16-4

without rules, 4-13
CREATE_JRAD_UI (API), 18-13
CREATE_RP_FOLDER (API), 18-9
CREATE_UI (API), 18-11
currency display, 9-21
custom data types

collections, 17-6
in CZ_CF_API, 17-6
record, 17-6
subtype, 17-6
table, 17-6

custom user interface
developed with CIO, 2-3

custom Web application
initialization parameters, 9-7
pricing and ATP integration, 13-1

customer support
MetaLink, 5

customer_id (ATP procedure parameter), 13-6
customer_id (initialization parameter), 9-12, 9-18
customer_site_id (ATP procedure parameter), 13-6
customer_site_id (initialization parameter), 9-12,

9-18
CZ schema

characteristics, 4-1
import table dependencies, 4-5
imported BOM data

Refresh a Single Configuration Model
concurrent program, 5-13, C-13

Refresh All Imported Configuration Models
concurrent program, C-14

overview, 2-6
Purge Configurator Import Tables, C-4
Purge Configurator Tables, C-3
Purge To Date Configurator Import Tables, C-4

Purge To Run ID Configurator Import
Tables, C-5

purging
before publishing, 3-6
concurrent programs, 8-1
logically deleted records, 5-5

redoing sequences, 8-3
subschemas, 4-1
synonyms, 4-2
verifying version, B-3

CZ: BOM Tree Expansion State
Hierarchical Table UI, 19-3

CZ: Fail BV if Configuration Changed
batch validation, 11-8

CZ: Fail BV If Input Quantities Not Maintained
batch validation, 11-8
profile option, 11-8

CZ: Generic Configurator UI Max Child Rows
Hierarchical Table UI, 19-3

CZ: Generic Configurator UI Type
Hierarchical Table UI, 19-2
Java Applet UI, 19-3

CZ: Hide Focus in Generic Configurator UI
Hierarchical Table UI, 19-3

CZ: Populate Decimal Quantity Flags
Generic Configurator User Interface, 19-3
importing, 5-11
profile option, 5-10
publishing, 5-11

CZ: Publication Lookup Mode
publishing, 16-9

CZ: Publication Usage
publishing, 16-9

CZ: Skip Validation Procedure
profile option, 11-8

CZ_ACCESS_SUMMARY_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONDISPLAYUPDT_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONMODELINTER_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONNAV_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONRULENODES_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONSESSIONCTRL_LKV (database table)
table in RP subschema, D-3

CZ_ACTIONSONMODELNODES_LKV (database
table)

table in RP subschema, D-3
CZ_ACTIONSONREPOSITORYN_LKV (database

table)
table in RP subschema, D-3

CZ_ACTIONTYPEGROUP_LKV (database table)
table in RP subschema, D-3

CZ_AMPM_LKV (database table)
table in RP subschema, D-3

CZ_ANYALLTRUE_LKV (database table)
table in RP subschema, D-3

CZ_ARCHIVE_REFS (database table)

Index-6

table in RP subschema, D-3
CZ_ARCHIVES (database table)

table in RP subschema, D-3
CZ_ARCHIVES_PICKER_V (database table)

table in RP subschema, D-3
CZ_ASSOCIATEDMODELNODE_LKV (database

table)
table in RP subschema, D-3

CZ_ATP_REQUESTS (interface table)
custom Web ATP integration, 13-1
table in CNFG subschema, D-2
usage in ATP callback, 13-6
usage in ATP package, 13-6

CZ_BASIC_LAYOUT_REGION_LKV (database table)
table in RP subschema, D-3

CZ_CAPCONFIGSYSPROP_LKV (database table)
table in RP subschema, D-3

CZ_CAPMSGSYSPROP_LKV (database table)
table in RP subschema, D-3

CZ_CAPNODESYSPROP_LKV (database table)
table in RP subschema, D-3

CZ_CF_API (package), 17-1
batch validation, 11-1
reference for, 17-6

CZ_CFG_SAVEASBEHAVIOR_LKV (database table)
table in RP subschema, D-3

CZ_CFG_SEARCHCRITERIA_LKV (database table)
table in RP subschema, D-3

CZ_CFGEXT_ARGS_SPEC_TYPE_LKV (database
table)

table in RP subschema, D-3
CZ_CFGEXT_EVENT_SCOPE_LKV (database table)

table in RP subschema, D-3
CZ_CFGEXT_INST_SCOPE_LKV (database table)

table in RP subschema, D-3
CZ_CFGEXT_SYSTEM_PARAMS_LKV (database

table)
table in RP subschema, D-3

CZ_COMBO_FEATURES (database table)
table in RULE subschema, D-5

CZ_COMMON_CHILDNDPROPS_V (database table)
table in PROJ subschema, D-2

CZ_COMPAT_TEMPL_SIGS_V (database table)
table in RP subschema, D-3

CZ_COMPATCELL_NODE_V (database table)
table in RULE subschema, D-5

CZ_CONFIG_API_PUB (package), 17-1
reference for, 17-6

CZ_CONFIG_API_PUB.COPY_CONFIGURATION
(API), 17-30

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_
AUTO (API), 17-34

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
(API), 17-56

CZ_CONFIG_ATTRIBUTES (interface table)
table in CNFG subschema, D-1

CZ_CONFIG_CONTENTS_V (database table)
table in CNFG subschema, D-1

CZ_CONFIG_DETAILS_V (database table)
table in CNFG subschema, D-1

CZ_CONFIG_EXT_ATTRIBUTES (database table)
table in CNFG subschema, D-1

CZ_CONFIG_HDRS (database table)
table in CNFG subschema, D-1
usage in initialization message, 9-17

CZ_CONFIG_HDRS_V (database table)
table in CNFG subschema, D-1

CZ_CONFIG_INPUTS (database table)
table in CNFG subschema, D-1

CZ_CONFIG_ITEMS (database table)
configuration output, 10-8
configuration output for parent node, 10-7
table in CNFG subschema, D-1

CZ_CONFIG_ITEMS_V (database table)
table in CNFG subschema, D-1

CZ_CONFIG_MESSAGES (database table)
table in CNFG subschema, D-1

CZ_CONFIG_MESSAGES_V (database table)
table in CNFG subschema, D-1

CZ_CONFIG_USAGES (database table)
table in CNFG subschema, D-1

CZ_CONVERSION_RELS_V (database table)
table in PROJ subschema, D-2

CZ_COPYDESTINATION_LKV (database table)
table in RP subschema, D-3

CZ_COPYSOURCE_LKV (database table)
table in RP subschema, D-3

CZ_CREATEOPTIONPSNODETY_LKV (database
table)

table in RP subschema, D-3
CZ_CREATEPSNODEPSNODETY_LKV (database

table)
table in RP subschema, D-3

CZ_CREATEREPOSITORYOBJE_LKV (database
table)

table in RP subschema, D-4
CZ_CREATERULEOBJECT_LKV (database table)

table in RP subschema, D-4
CZ_DATA_SUBTYPES_V (database table)

table in TYP subschema, D-6
CZ_DATA_TYPES_V (database table)

table in PROJ subschema, D-2
CZ_DATATYPE_LKV (database table)

table in RP subschema, D-4
CZ_DB_LOGS (database table)

table in ADMN subschema, D-1
CZ_DB_SETTINGS (database table)

AltBatchValidateURL, 4-9
BadItemPropertyValue, 4-9
BatchSize, 4-10
BOM_REVISION, 4-10
CommitSize, 4-10
customizable settings, 1-2
DISPLAY_INSTANCE_NAME, 4-10
FREEZE_REVISION, 4-11
GenerateGatedCombo, 4-11
GenerateUpdatedOnly, 4-11
GenStatisticsCZ, 4-11
MAJOR_VERSION, 4-11, B-3
MaximumErrors, 4-11

Index-7

MemoryBulkSize, 4-12
MINOR_VERSION, 4-12, B-3
MULTISESSION, 4-12
OracleSequenceIncr, 4-12
PsNodeName, 4-12
PublicationLogging, 4-13
PublishingCopyRules, 4-13
RefPartNbr, 4-13
ResolvePropertyDataType, 4-14, 5-6
RestoredConfigDefaultModelLookupDate, 4-14
Revision Date/User, 4-15
RUN_BILL_EXPLODER, 4-15
sections

IMPORT, 4-7
LogicGen, 4-7
ORAAPPS_INTEGRATE, 4-7
SCHEMA, 4-7
UISERVER, 4-7

SETTING_ID
AltBatchValidateURL, 4-8
BadItemPropertyValue, 4-8
BatchSize, 4-8
BOM_REVISION, 4-8
CommitSize, 4-8
DISPLAY_INSTANCE_NAME, 4-8
FREEZE_REVISION, 4-8
GenerateGatedCombo, 4-8
GenerateUpdatedOnly, 4-8
GenStatisticsBOM, 4-8
GenStatisticsCZ, 4-8
MAJOR_VERSION, 4-8
MaximumErrors, 4-8
MemoryBulkSize, 4-8
MINOR_VERSION, 4-8
MULTISESSION, 4-8
OracleSequenceIncr, 4-8
PsNodeName, 4-8
PublicationLogging, 4-9
PublishingCopyRules, 4-9
RefPartNbr, 4-9
ResolvePropertyDataType, 4-9
RestoredConfigDefaultModelLookupDate, 4-9
Revision Date/User, 4-9
RUN_BILL_EXPLODER, 4-9
SuppressSuccessMessage, 4-9
TimeImport, 4-9
UI_NODE_NAME_CONCAT_CHARS, 4-9
UseLocalTableInExtractionViews, 4-9
UtlHttpTransferTimeout, 4-9

SuppressSuccessMessage, 4-15
table in ADMN subschema, D-1
TimeImport, 4-16
UI_NODE_NAME_CONCAT_CHARS, 4-16
usage, 4-7
UseLocalTableInExtractionViews, 4-16
UtlHttpTransferTimeout, 4-16

CZ_DB_SIZES (database table)
table in ADMN subschema, D-1

CZ_DES_CHART_CELLS (database table)
table in RULE subschema, D-5

CZ_DES_CHART_COLUMNS (database table)
table in RULE subschema, D-5

CZ_DES_CHART_FEATURES (database table)
table in RULE subschema, D-5

CZ_DETAILEDRULETYPES_LKV (database table)
table in RP subschema, D-4

CZ_DETLSELECTIONSTATE_LKV (database table)
table in RP subschema, D-4

CZ_DEVL_PROJECTS (database table)
synchronized fields, 7-3
table in PROJ subschema, D-2

CZ_EFFECTIVITY_SETS (database table)
importing dependency, 4-6
table in PB subschema, D-2

CZ_EFFECTIVITYMETHODS_LKV (database table)
table in RP subschema, D-4

CZ_EFFECTIVITYTYPE_LKV (database table)
table in RP subschema, D-4

CZ_EFFSETS_PICKER_V (database table)
table in RP subschema, D-4

CZ_EVENTTYPES_LKV (database table)
table in RP subschema, D-4

CZ_EXNEXPRTYPE_LKV (database table)
table in RP subschema, D-4

CZ_EXPLMODEL_NODES_V (database table)
table in PROJ subschema, D-2

CZ_EXPLNODES_WITHIMAGES_V (database table)
table in PROJ subschema, D-2

CZ_EXPRESSION_NODES (database table)
table in RULE subschema, D-5

CZ_EXT_APPLICATIONS (database table)
publishing application table, 16-4
publishing applications, 16-7
table in PB subschema, D-2

CZ_EXT_APPLICATIONS_V (database table)
table in PB subschema, D-2

CZ_FEATURETYPE_LKV (database table)
table in RP subschema, D-4

CZ_FILTER_SETS (database table)
table in RULE subschema, D-5

CZ_FUNC_COMP_SPECS (database table)
table in PROJ subschema, D-2

CZ_GRID_CELLS (database table)
table in RULE subschema, D-5

CZ_GRID_COLS (database table)
table in RULE subschema, D-5

CZ_GRID_DEFS (database table)
table in RULE subschema, D-5

CZ_HORIZONTALALIGNMENT_LKV (database
table)

table in RP subschema, D-4
CZ_HOURS_LKV (database table)

table in RP subschema, D-4
CZ_ICONLOOKUP_LKV (database table)

table in RP subschema, D-4
CZ_IMAGELOOKUPS_V (database table)

table in RP subschema, D-4
CZ_IMP_DEVL_PROJECT (interface table)

importing dependency, 4-5, 4-6
order during populating import tables, 5-9

Index-8

table in PROJ subschema, D-2
CZ_IMP_INTL_TEXT (interface table)

importing dependency, 4-5
CZ_IMP_ITEM_MASTER (interface table)

importing dependency, 4-5
order during populating import tables, 5-9
table in ITEM subschema, D-1

CZ_IMP_ITEM_PROPERTY_VALUE (interface table)
BadItemPropertyValue, 4-9
importing dependency, 4-5
order during populating import tables, 5-9
table in ITEM subschema, D-1

CZ_IMP_ITEM_TYPE (interface table)
importing, 4-1
importing dependency, 4-5
order during populating import tables, 5-9
table in ITEM subschema, D-1

CZ_IMP_ITEM_TYPE_PROPERTY (interface table)
importing dependency, 4-5
order during populating import tables, 5-9
table ITEM subschema, D-1

CZ_IMP_LOCALIZED_TEXTS (interface table)
imported rule data, 5-21
importing

legacy rules, 5-17
populate fields, 5-19

importing dependency, 4-5
order during populating import tables, 5-9
table in UI subschema, D-6

CZ_IMP_MODEL_REF_EXPLS (interface table)
table in PROJ subschema, D-2

CZ_IMP_PROPERTY (interface table)
importing dependency, 4-2, 4-5, 4-6
order during populating import tables, 5-9
table in ITEM subschema, D-1

CZ_IMP_PS_NODES (interface table)
importing dependency, 4-6
order during populating import tables, 5-9
table in PROJ subschema, D-2

CZ_IMP_RULES (database table)
table in RULE subschema, D-5

CZ_IMP_RULES (interface table)
imported rule data, 5-20
importing

legacy rules, 5-16
populate fields, 5-17

CZ_INTL_TEXTS (database table)
usage in exploding BOMs, 4-15

CZ_ITEM_MASTERS (database table)
BOM synchronization, 7-3
DECIMAL_QTY_FLAG, 5-10
RefPartNbr setting in CZ_DB_SETTINGS, 4-13
synchronized fields, 7-3
table in ITEM subschema, D-1

CZ_ITEM_PROPERTY_VALUES (database table)
BOM synchronization, 7-5
table in ITEM subschema, D-2

CZ_ITEM_TYPE_PROPERTIES (database table)
BOM synchronization, 7-5
table in ITEM subschema, D-2

CZ_ITEM_TYPES (database table)
synchronized fields, 7-3
table in ITEM subschema, D-2

CZ_ITEMMASTEROPS_LKV (database table)
table in RP subschema, D-4

CZ_ITEMTYPE_LKV (database table)
table in RP subschema, D-4

CZ_ITEMTYPEOPERATOR_LKV (database table)
table in RP subschema, D-4

CZ_JAVASYSPROPVALS_LKV (database table)
table in RP subschema, D-4

CZ_JRAD_CHUNKS (database table)
table in UI subschema, D-6

CZ_LAYOUT_UI_STYLE_LKV (database table)
table in RP subschema, D-4

CZ_LAYOUTREGIONS_LKV (database table)
table in RP subschema, D-4

CZ_LCE_CLOBS (database table)
table in LCE subschema, D-2

CZ_LCE_HEADERS (database table)
table in LCE subschema, D-2

CZ_LCE_LINES (database table)
table in LCE subschema, D-2

CZ_LCE_LOAD_SPECS (database table)
table in LCE subschema, D-2

CZ_LCE_OPERANDS (database table)
table in LCE subschema, D-2

CZ_LCE_TEXTS (database table)
table in LCE subschema, D-2

CZ_LISTLAYOUTREGIONS_LKV (database table)
table in RP subschema, D-4

CZ_LOCALIZED_TEXTS (database table)
synchronized fields, 7-3
table in UI subschema, D-6
tooltip translations, 14-1
translation strings, 14-2

CZ_LOCK_HISTORY (database table)
table in RP subschema, D-4

CZ_LOGICRULE_LKV (database table)
table in RP subschema, D-4

CZ_LOOKUP_VALUES (database table)
table in RP subschema, D-4

CZ_LOOKUP_VALUES_VL (database table)
table in RP subschema, D-4

CZ_MDLNODE_CPDST_LKV (database table)
table in RP subschema, D-4

CZ_MDLNODE_CPSRC_LKV (database table)
table in RP subschema, D-4

CZ_MENUITEMTYPES_LKV (database table)
table in RP subschema, D-4

CZ_MENUTYPES_LKV (database table)
table in RP subschema, D-4

CZ_MINUTES_LKV (database table)
table in RP subschema, D-4

CZ_MODEL_ALL_RULEFOLDERS_V (database
table)

table in RULE subschema, D-6
CZ_MODEL_ARCHIVES_V (database table)

table in PROJ subschema, D-2
CZ_MODEL_BOMREF_COUNTS_V (database table)

Index-9

table in PROJ subschema, D-2
CZ_MODEL_PUBLICATIONS (database table), 9-22

publication table, 16-4, 16-5
publishing, 16-12
synchronized fields, 7-3
table in PB subschema, D-2

CZ_MODEL_REF_EXPLS (database table)
importing dependency, 4-6
table in PROJ subschema, D-3

CZ_MODEL_REFERENCES_PICKER_V (database
table)

table in RP subschema, D-4
CZ_MODEL_USAGES (database table)

publication table, 16-5
table in PB subschema, D-2

CZ_modelOperations_pub (package), 18-1
reference for, 18-6

CZ_MODELRULEFOLDER_IMAGES_V (database
table)

table in RULE subschema, D-5
CZ_MODELS_V (database table)

table in PROJ subschema, D-2
CZ_MSGLISTLAYOUTREGIONS_LKV (database

table)
table in RP subschema, D-4

CZ_NODE_CAPTION_PROPERTIES_V (database
table)

table in PROJ subschema, D-3
CZ_NODE_DISPCOND_PROPERTIES_V (database

table)
table in TYP subschema, D-6

CZ_NODE_JAVA_PROPERTIES_V (database table)
table in PROJ subschema, D-3

CZ_NODE_NO_PROPERTIES_V (database table)
table in PROJ subschema, D-3

CZ_NODE_RULE_PROPERTIES_V (database table)
table in PROJ subschema, D-3

CZ_NODE_USAGE_IN_RULES_V (database table)
table in RULE subschema, D-6

CZ_NODE_USER_PROPERTIES_V (database table)
table in PROJ subschema, D-3

CZ_NODEINSTANTIABILITY_LKV (database table)
table in RP subschema, D-4

CZ_NODELIST_LAYOUT_REGION_LKV (database
table)

table in RP subschema, D-4
CZ_NODELISTLAYOUTREGIONS_LKV (database

table)
table in RP subschema, D-4

CZ_NODETYPE_PROPERTIES_V (database table)
table in TYP subschema, D-6

CZ_NODETYPE_SYSPROPS_V (database table)
table in RULE subschema, D-6

CZ_OTHERCONTENT_LKV (database table)
table in RP subschema, D-4

CZ_PARENT_CHILD_RELS_V (database table)
table in TYP subschema, D-6

CZ_PB_CLIENT_APPS (database table)
publication table, 16-5
publications, 16-12

publishing applications, 16-7
table in PB subschema, D-2

CZ_PB_LANGUAGES (database table)
publication table, 16-5
table in PB subschema, D-2

CZ_PB_MODEL_EXPORTS (database table)
publication table, 16-5
publishing, 16-13
table in PB subschema, D-2

CZ_PB_TEMP_IDS (database table)
table in PB subschema, D-2

CZ_POPULATORS (database table)
table in PROJ subschema, D-3

CZ_PRICING_STRUCTURES (interface table)
custom Web pricing integration, 13-1
pricing limitations, 13-5
runtime pricing usage, 13-2
table description, 13-4
table in CNFG subschema, D-2
usage in multiple items procedures, 13-4

CZ_PROPERTIES (database table)
table in ITEM subschema, D-2

CZ_PROPERTY_PICKER_V (database table)
table in RP subschema, D-4

CZ_PS_NODES (database table)
BOM synchronization, 7-3
DECIMAL_QTY_FLAG, 5-10
synchronized fields, 7-4
table in PROJ subschema, D-3

CZ_PS_PROP_VALS (database table)
table in PROJ subschema, D-3

CZ_PS_UI_CTRL_MAPS (database table)
table in UI subschema, D-6

CZ_PSN_TYPED_RULE_REFS_V (database table)
table in RULE subschema, D-6

CZ_PSNODE_REFRULE_IMAGES_V (database table)
table in PROJ subschema, D-3

CZ_PSNODE_REFUI_IMAGES_V (database table)
table in PROJ subschema, D-3

CZ_PSNODE_RULE_REFS_V (database table)
table in PROJ subschema, D-3

CZ_PSNODE_WITH_UIREFS_V (database table)
table in PROJ subschema, D-3

CZ_PSNODERELATION_LKV (database table)
table in RP subschema, D-4

CZ_PSNODETYPE_IMAGES_V (database table)
table in UI subschema, D-6

CZ_PSNODETYPE_LKV (database table)
table in RP subschema, D-4

CZ_PUBLICATION_USAGES (database table)
publication table, 16-5
publishing, 16-12
table in PB subschema, D-2

CZ_PUBLICATIONMODE_LKV (database table)
table in RP subschema, D-4

CZ_RECALCULATEPRICES_LKV (database table)
table in RP subschema, D-4

CZ_REPOS_TREE_V (database table)
table in RP subschema, D-4

CZ_REPOSCREATEOPS_LKV (database table)

Index-10

table in RP subschema, D-4
CZ_REPOSITORY_MAIN_HGRID_V (database table)

table in RP subschema, D-4
CZ_REPOSITORYCOPYDESTIN_LKV (database

table)
table in RP subschema, D-4

CZ_REPOSITORYCOPYMODELO_LKV (database
table)

table in RP subschema, D-4
CZ_RP_BOM_MODELS_V (database table)

table in RP subschema, D-4
CZ_RP_DIRECTORY_V (database table)

table in RP subschema, D-4
CZ_RP_EFF_DIRECTORY_V (database table)

table in RP subschema, D-4
CZ_RP_ENTRIES (database table)

table in RP subschema, D-4
CZ_RP_PRJ_DIRECTORY_V (database table)

table in RP subschema, D-4
CZ_RP_USG_DIRECTORY_V (database table)

table in RP subschema, D-4
CZ_RPOBJECTTYPES_LKV (database table)

table in RP subschema, D-4
CZ_RTCONDCOMPAR_LKV (database table)

table in RP subschema, D-4
CZ_RTCONDOBJSETTINGS_LKV (database table)

table in RP subschema, D-5
CZ_RUL_TYPEDPSN_V (database table)

table in RULE subschema, D-6
CZ_RULE_EXPRDETLS_V (database table)

table in RULE subschema, D-6
CZ_RULE_EXPRESSION_V (database table)

table in RULE subschema, D-6
CZ_RULE_FOLDERS (database table)

table in RULE subschema, D-6
CZ_RULE_PARTICIPANTS_V (database table)

table in RULE subschema, D-6
CZ_RULERADIOGROUP_LKV (database table)

table in RP subschema, D-5
CZ_RULES (database table)

table in RULE subschema, D-6
CZ_RULES_WITH_ARGS_V (database table)

table in RULE subschema, D-6
CZ_RULETEMPLS_BYLABEL_V (database table)

table in RULE subschema, D-6
CZ_RULETYPE_IMAGES_V (database table)

table in UI subschema, D-6
CZ_RULETYPECODES_LKV (database table)

table in RP subschema, D-5
CZ_RULEUNSATMESSAGECHOI_LKV (database

table)
table in RP subschema, D-5

CZ_RULEVIOLATIONMESSAGE_LKV (database
table)

table in RP subschema, D-5
CZ_SERVERS (database table)

Import Enabled, C-7
table in RP subschema, D-5

CZ_SIMPLECONTROLS_LKV (database table)
table in RP subschema, D-5

CZ_SORTORDER_LKV (database table)
table in RP subschema, D-5

CZ_SOURCEENTITYTYPES_LKV (database table)
table in RP subschema, D-5

CZ_SRC_DEVL_PROJECTS_V (database table)
table in PROJ subschema, D-3

CZ_SRC_MODEL_PUBLICATIONS_V (database
table)

table in PB subschema, D-2
CZ_SUBTYPEBOMMODEL_LKV (database table)

table in RP subschema, D-5
CZ_SUBTYPEBOMOPTIONCLAS_LKV (database

table)
table in RP subschema, D-5

CZ_SUBTYPEBOMSTDITEM_LKV (database table)
table in RP subschema, D-5

CZ_SUBTYPECOMPONENT_LKV (database table)
table in RP subschema, D-5

CZ_SUBTYPEFEATURE_LKV (database table)
table in RP subschema, D-5

CZ_SUBTYPEFEATUREGROUP_LKV (database
table)

table in RP subschema, D-5
CZ_SUBTYPEOPTION_LKV (database table)

table in RP subschema, D-5
CZ_SUBTYPEPRODUCT_LKV (database table)

table in RP subschema, D-5
CZ_SUBTYPERESOURCE_LKV (database table)

table in RP subschema, D-5
CZ_SUBTYPETOTAL_LKV (database table)

table in RP subschema, D-5
CZ_SYSTEM_PROPERTIES_V (database table)

table in PROJ subschema, D-3
CZ_SYSTEM_PROPERTY_RELS_V (database table)

table in PROJ subschema, D-3
CZ_TEMPLATE_DEFS_V (database table)

table in PROJ subschema, D-3
CZ_TERMINATE_MSGS (database table)

table in PROJ subschema, D-3
CZ_TERMINATE_MSGS_V (database table)

table in PROJ subschema, D-3
CZ_TGT_MODEL_PUBLICATIONS_V (database

table)
table in PROJ subschema, D-3

CZ_TYPE_RELATIONSHIPS (database table)
table in TYP subschema, D-6

CZ_TYPED_RULES_V (database table)
table in RULE subschema, D-6

CZ_UCT_PARNTCONTTY_LKV (database table)
table in RP subschema, D-5

CZ_UCTMESSAGETYPE_LKV (database table)
table in RP subschema, D-5

CZ_UI_ACTIONS (database table)
publication table, 16-5
publishing UI_DEF_IDs, 16-9
table in UI subschema, D-6

CZ_UI_COLLECT_TMPLS_V (database table)
table in UI subschema, D-6

CZ_UI_CONT_TYPE_TEMPLS (database table)
publishing generated UIs for a UI_DEF_ID, 16-10

Index-11

publishing UI_DEF_IDs, 16-9
table in UI subschema, D-6

CZ_UI_CONT_TYPE_TEMPLS_VV (database table)
table in UI subschema, D-6

CZ_UI_DEFS (database table), 9-25
publication table, 16-5
publishing UI_DEF_IDs, 16-9
table in UI subschema, D-6

CZ_UI_ELEMENT_ATTRIBUTES_V (database table)
table in UI subschema, D-6

CZ_UI_HGRID_ACTIONS_LKV (database table)
table in RP subschema, D-5

CZ_UI_IMAGES (database table)
table in UI subschema, D-6

CZ_UI_MSTTMP_BOMCON_UILAY_LKV (database
table)

table in RP subschema, D-5
CZ_UI_MSTTMP_CNTRLLAYOUT_LKV (database

table)
table in RP subschema, D-5

CZ_UI_MSTTMP_NBOMCON_UILAY_LKV
(database table)

table in RP subschema, D-5
CZ_UI_MSTTMP_PAG_CMP_LKV (database table)

table in RP subschema, D-5
CZ_UI_MSTTMP_PAG_DDNCTRL_LKV (database

table)
table in RP subschema, D-5

CZ_UI_MSTTMP_PAG_NOC_LKV (database table)
table in RP subschema, D-5

CZ_UI_MSTTMP_PAG_REF_LKV (database table)
table in RP subschema, D-5

CZ_UI_MSTTMP_PAGINATION_LKV (database
table)

table in RP subschema, D-5
CZ_UI_MSTTMP_PRINAV_LKV (database table)

table in RP subschema, D-5
CZ_UI_MSTTMP_SUPDIS_LKV (database table)

table in RP subschema, D-5
CZ_UI_MSTTMP_TMPUSG_LKV (database table)

table in RP subschema, D-5
CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV

(database table)
table in RP subschema, D-5

CZ_UI_NODE_PROPS (database table)
table in UI subschema, D-7

CZ_UI_NODES (database table)
table in UI subschema, D-6

CZ_UI_PAGE_ELEMENTS (database table)
table in UI subschema, D-7

CZ_UI_PAGE_REFS (database table)
publishing UI_DEF_IDs, 16-9
table in UI subschema, D-7

CZ_UI_PAGE_SETS (database table)
publishing UI_DEF_IDs, 16-9
table in UI subschema, D-7

CZ_UI_PAGES (database table)
publishing generated UIs for a UI_DEF_ID, 16-10
publishing UI_DEF_IDs, 16-9
table in UI subschema, D-7

CZ_UI_PATHED_IMAGES_V (database table)
table in UI subschema, D-7

CZ_UI_PROPERTIES (database table)
table in UI subschema, D-7

CZ_UI_REF_TEMPLATES (database table)
table in UI subschema, D-7

CZ_UI_REFS (database table)
publishing UI_DEF_IDs, 16-10
table in UI subschema, D-7

CZ_UI_TEMPLATES (database table)
publishing generated UIs for a UI_DEF_ID, 16-10
publishing UI_DEF_IDs, 16-10
table in UI subschema, D-7

CZ_UI_TEMPLATES_VV (database table)
table in UI subschema, D-7

CZ_UI_TYPEDPSN_V (database table)
table in UI subschema, D-7

CZ_UI_XMLS (database table)
table in UI subschema, D-7

CZ_UIDEF_SIGNATURE_TEMPLS_V (database
table)

table in UI subschema, D-6
CZ_UIELEMENT_IMAGES_V (database table)

table in UI subschema, D-6
CZ_UITEMPL_CONTROLS_V (database table)

table in UI subschema, D-6
CZ_UITEMPL_MESSAGES_V (database table)

table in UI subschema, D-6
CZ_UITEMPL_UTILITY_V (database table)

table in UI subschema, D-6
CZ_UITEMPLS_FOR_PSNODES_V (database table)

table in UI subschema, D-6
CZ_USAGES_PICKER_V (database table)

table in RP subschema, D-5
CZ_VALID_RESULT_TYPES_V (database table)

table in TYP subschema, D-6
CZ_VALIDRESULTFORCOMPON_LKV (database

table)
table in RP subschema, D-5

CZ_VALIDRESULTFOROPTFEA_LKV (database
table)

table in RP subschema, D-5
CZ_VERTICALALIGNMENT_LKV (database table)

table in RP subschema, D-5
CZ_VIEWBYSELECTION_LKV (database table)

table in RP subschema, D-5
CZ_XFR control tables

Oracle Configurator XFR subschema
use with concurrent programs, 4-6

CZ_XFR_FIELDS (interface table)
import process, 4-6
table in XFR subschema, D-7
usage, 4-7

CZ_XFR_PROJECT_BILLS (interface table)
import process, 4-6
importing BOM Models, 4-15, 5-9, 5-10
synchronized fields, 7-4
table in XFR subschema, D-7

CZ_XFR_RUN_INFOS (interface table)
import information, 4-6

Index-12

purging concurrent programs, C-4, C-5
purging data, 8-2
table in XFR subschema, D-7

CZ_XFR_RUN_RESULTS (interface table)
import information, 4-6
purging, C-4
purging concurrent programs, C-4, C-5
purging data, 8-2
table in XFR subschema, D-7

CZ_XFR_STATUS_CODES (interface table)
import information, 4-7
table in XFR subschema, D-7

CZ_XFR_TABLES (interface table)
import dependency, 4-5
import process, 4-6
importing data, 5-9
table in XFR subschema, D-7
usage, 4-7

cz.activemodel
settings for price types, 13-10

czBlafTemplate.htm, 9-24
czFormTemplate.htm, 9-24
czlce.dll

file for Servlet directory, 12-2
cz.uiserver.allow_alt_database_login, 9-14
cz.uiservlet.pre_load_filename

contribution to performance, 9-3

D
data

import
control fields, 4-3
security, 20-7

purging, 8-1
transfer file format, 5-24

database
linking, B-3

Define and Enable Remote Servers, 3-4
enabling a remote server, 5-7
Modify Server Definition, 5-7
production environment, 3-6
publishing, 16-6

Database Instance
concurrent program parameter, C-10

database instances
decommissioning, 3-4
development, 3-3
exploding BOMs, 1-2, 5-8
production, 3-3
remote publication, 16-4
SID, 3-5, C-7, C-9
source publication, 16-4
synchronizing, 3-4
synchronizing BOMs, 1-2

database_id (initialization parameter), 9-5, 9-18
Date Range

applicability parameter, 16-7
DBC file

connection pooling, 20-3

connectivity, 9-18
debugging

log files, xxviii
decimal quantities

importing a BOM, 5-10
Standard Item, 5-10

DECIMAL_QTY_FLAG (database column)
importing a BOM, 5-10

deep copy, 18-15
DEEP_MODEL_COPY (API), 18-15
DEFAULT_NEW_CFG_DATES (API), 17-36
DEFAULT_RESTORED_CFG_DATES (API), 17-37
DELETE_CONFIGURATION (API), 17-39
deleting

publications, 16-12
deployment

custom, 1-7
requirements for Web, 19-1
tasks, 1-6
Web, 19-1

Descriptive Elements
imported data, 5-4
importing BOM Properties

ResolvePropertyDataType, 5-6
synchronizing, 7-5
usage with ResolvePropertyDataType when

importing, 4-14
development

database instance, 3-3
environment, 3-5

DHTML (legacy UIs)
Configurator

browser requirements, 1-6
cookies, 1-6
recommended screen resolution, 1-6

CREATE_UI, 18-11
REFRESH_UI, 18-28
usage, 2-4

directories
Servlet, 12-2

disabling
multisession, 4-12
publications, 16-12
servers, 5-7
tables for import, 5-9

discounted_price (XML element), 10-7
DISPLAY_INSTANCE_NAME

CZ_DB_SETTINGS, 4-8
usage, 4-10

DISPOSITION
import control field, 4-3

disposition codes
BadItemPropertyValue, 4-10
import control field, 4-3

document element, 9-2
drivers

thin required, 9-14
DTD (Document Type Definition)

for XML elements, 10-2

Index-13

E
effectivity

date for planning publications, 16-2
Effectivity Sets

planning publications, 16-2
end users

responsibilities, 9-15
environment variables, 12-2
errors

troubleshooting, xxviii
eTRM, xxvi, 5
examples

calling programmatic tools, 17-53
PL/SQL, 17-53

exceptions
data sent to return URL, 9-11

EXECUTE_POPULATOR (API), 18-17
exit (XML element), 10-4
exploding BOMs

CZ_XFR_PROJECT_BILLS, 5-9
multiple database instances, 1-2, 5-8

F
firewalls

effect on servlet connections, 20-5
interference with application, 20-5
security deployment, 20-6

flexfields
Item structure, 7-4
System Item, 4-13

FND_APPLICATION (database table), 9-14, 9-15
FND_JDBC_MAX_WAIT_TIME, 20-3
FND_MAX_JDBC_CONNECTIONS, 20-3
FND_USER (database table), 9-26
Foreign Surrogate Key

importing, 4-5
FREEZE_REVISION

CZ_DB_SETTINGS, 4-8
usage, 4-11

From Date and To Date
applicability parameter, 16-7

Function security, 15-1
Functional Companions

concurrent programs for migrating from, C-22
migrating, 1-3, C-20
See also Configurator Extensions

G
Gated Combinations

False logic state in rules, 4-11
GENERATE_LOGIC (API), 18-21
GenerateGatedCombo

CZ_DB_SETTINGS, 4-8
usage, 4-11

GenerateUpdatedOnly
CZ_DB_SETTINGS, 4-8
usage, 4-11

Generic Configurator User Interface

CZ: BOM Tree Expansion State, 19-3
CZ: Generic Configurator UI Max Child

Rows, 19-3
CZ: Generic Configurator UI Type, 19-2, 19-3
CZ: Hide Focus in Generic Configurator UI, 19-3
CZ: Populate Decimal Quantity Flags, 19-3
definition, 19-2
deployment, 19-1
publishing in host application, 2-4, 16-2
setting up, 19-3

generic import
synonym for custom import, 18-24

GenStatisticsBOM
CZ_DB_SETTINGS, 4-8

GenStatisticsCZ
CZ_DB_SETTINGS, 4-8
usage, 4-11

Get ATP Dates, 13-6
ATP interface procedure, 13-6

get_atp_dates_proc (initialization parameter), 9-12,
9-18

GIF files, 12-2
guided buying or selling

Oracle Order Management, 9-24
termination message, 9-24

H
heartbeat mechanism

for guided selling, 9-24
hierarchical structure

configuration model, 13-5
host application

batch validation, 21-3
BOM: Configurator URL of UI Manager, 2-3
copying an entity, 21-5
delete obsolete configurations, 21-3
initialization message, 2-3
invoking Oracle Configurator, 2-3
login, 2-3
managing saved configurations, 21-2
responsibilities, 9-2
types, 2-3

I
ICX session ticket, 2-3

Language setting, 14-2
security, 20-6

ICX_SESSION_TICKET (API), 17-41
icx_session_ticket (initialization parameter), 9-18
IMPORT

CZ_DB_SETTINGS, 4-7
import

rule
validation, 5-21

rule status, 5-21
Import Enabled (parameter), C-7, C-8
IMPORT_GENERIC (API), 18-24
IMPORT_SINGLE_BILL (API), 18-23

Index-14

imported Properties
defining Inventory Items for import, 5-6
usage during BOM synchronization, 7-5

importing
BOM rules, 5-4
common bill, 5-16
concurrent programs, 5-2
configuration attributes, 1-3
configuration rules, 1-3, 5-2
Configurator Extensions, 1-3, 5-2
control tables, 5-22
custom, 5-21

single tables, 4-5
CZ schema performance, 5-5
CZ: Fail BV if Configuration Changed profile

option, 11-8
CZ: Fail BV If Input Quantities Not Maintained

profile option, 11-8
CZ_XFR_FIELDS, 4-6
CZ_XFR_PROJECT_BILLS, 4-6
CZ_XFR_RUN_INFOS, 4-6
CZ_XFR_RUN_RESULTS, 4-6
CZ_XFR_STATUS_CODES, 4-7
CZ_XFR_TABLES, 4-6, 5-9
data

NOUPDATE, 4-7
data control fields

DISPOSITION, 4-3
REC_NBR, 4-3
REC_STATUS, 4-4
RUN_ID, 4-3

decimal quantity flag, 5-11
DECIMAL_QTY_FLAG, 5-10
defining and enabling a remote server, 5-4, 5-7
defining items

MLS descriptions, 5-6
Oracle Applications, 5-5

dependencies among tables, 4-5
execution, 4-15
exploding BOM Models, 5-4
foreign surrogate key fields, 4-4
Import Configuration Rules, 5-11
Item descriptions, 14-2
legacy rules

CZ_IMP_LOCALIZED_TEXTS (interface
table), 5-17

CZ_IMP_RULES, 5-16
locking Models, 5-2
Modify Server Definition, 5-7
MTL_SYSTEM_ITEMS, 5-10
order of populating import tables, 5-9
ORGANIZATION_ID, 5-10
Populate Configuration Models, 5-4, 5-11, C-12
properties from Oracle Inventory, 5-4
referenced BOMs, 5-13
Refresh a Single Configuration Model, C-13
Refresh All Imported Configuration

Models, C-14
rules, 5-16
schedule during development, 5-22

setup process, 5-8
Standard Items

EXPLOSION_TYPE, 5-9
integer or decimal quantity, 5-10

surrogate primary key, 4-5
synchronization, 5-5, 5-12
table cleanup, C-12

Purge Configurator Import Tables, C-4
Purge To Date Configurator Import

Tables, C-4
Purge To Run ID Configurator Import

Tables, C-5
testing imported configuration models, 5-22
UseLocalTableInExtractionViews, 4-16

initialization
applicability parameters, 9-10
definition, 9-2
message

ATP parameter example, 13-7
ATP parameters, 13-8
defined, 9-2
host application, 2-3
introduction, 9-1
pricing and ATP example, 13-9
pricing parameter example, 13-5
pricing parameters, 13-8
publishing, 16-2
return URL, 10-10
setting parameters, 9-2
syntax, 9-3
testing, 9-5
usage, 2-3
use in preloading servlet, 9-3
validation of parameters, 9-6

parameters
alt_database_name, 9-14
application_id, 9-14
apps_connection_info, 9-14
arbitrary type, 9-12
atp_package_name, 9-15
calling_application_id, 9-15
client_header, 9-15
client_line, 9-16
client_line_detail, 9-16
config_creation_date, 9-16
config_effective_date, 9-16
config_effective_usage, 9-17
config_header_id, 9-17
config_model_lookup_date, 9-17
config_rev_nbr, 9-17
configuration identification type, 9-8
configurator_session_key, 9-17
context_org_id, 9-17
customer_id, 9-18
customer_site_id, 9-18
database_id, 9-18
default values, 9-4
empty, 9-4
errors, 9-4
get_atp_dates_proc, 9-18

Index-15

icx_session_ticket, 9-18
ignoring, 9-4
inventory_item_id, 9-18
jrad_standalone, 9-18
login type, 9-7
model_id, 9-19
model_quantity, 9-19
obtaining list of, 9-12
omitted, 9-4
organization_id, 9-20
price_mult_items_mls_proc, 9-21
price_mult_items_proc, 9-21
price_single_item_proc, 9-21
pricing type, 9-11
pricing_package_name, 9-21
product_id, 9-21
publication_mode, 9-22
pwd, 9-22
read_only, 9-22
requested_date, 9-23
responsibility_id, 9-23
return URL type, 9-10
return_url, 9-23
save_config_behavior, 9-23
sbm_flag, 9-23
ship_to_org_id, 9-24
template_url, 9-24
terminate_id, 9-24
terminate_msg_behavior, 9-25
types, 9-6
ui_def_id, 9-25
ui_type, 9-25
user, 9-25
user_id, 9-26
warehouse_id, 9-26
See also XML elements

initialization parameters
custom Web application, 9-7

initialize
XML element, 9-2

init.ora file, 20-3
installing

deployment environment, 3-6
development environment, 3-5
maintenance environment, 3-5
production environment, 3-6
scenarios, 2-4
test environment, 3-6

instances
importing min and max settings, 5-11
See also database instances

instantiation
pricing limitations, 13-5
sbm_flag initialization parameter, 9-23
supporting multiple instantiation, 9-10

Integer Quantity
Standard Item, 5-10

interface tables
CZ_ATP_REQUESTS, 13-6

availability-to-promise information, D-2

custom host applications, 13-1
CZ_CONFIG_ATTRIBUTES

configuration information, D-1
CZ_IMP_DEVL_PROJECT

import dependency, 4-5, 4-6, 5-9
project information, D-2

CZ_IMP_INTL_TEXT
import dependency, 4-5

CZ_IMP_ITEM_MASTER
import dependency, 4-5, 5-9
Model information, D-1

CZ_IMP_ITEM_PROPERTY_VALUE
import dependency, 4-5, 5-9
Item information, D-1

CZ_IMP_ITEM_TYPE
import dependency, 4-1, 4-5, 5-9
Item information, D-1

CZ_IMP_ITEM_TYPE_PROPERTY
import dependency, 4-5, 5-9
Item information, D-1

CZ_IMP_LOCALIZED_TEXTS
import dependency, 4-5, 5-9
MLS information, D-6

CZ_IMP_MODEL_REF_EXPLS
project information, D-2

CZ_IMP_PROPERTY
import dependency, 4-2, 4-5, 4-6, 5-9
Item information, D-1

CZ_IMP_PS_NODES
import dependency, 4-6, 5-9
project information, D-2

CZ_PRICING_STRUCTURES
pricing information, D-2
runtime pricing usage, 13-2, 13-4

CZ_XFR_FIELDS
import dependency, 4-7
import information, D-7

CZ_XFR_PROJECT_BILLS
import dependency, 5-9
import information, D-7

CZ_XFR_RUN_INFOS
import information, D-7

CZ_XFR_RUN_RESULTS
import information, D-7

CZ_XFR_STATUS_CODES
import information, D-7

CZ_XFR_TABLES
import dependency, 4-5, 4-7
import information, D-7

Internet Explorer
See Microsoft Internet Explorer

INVENTORY_ITEM_ID (database column), 9-18,
9-19, 10-7

inventory_item_id (initialization parameter), 9-9,
9-18

inventory_item_id (XML element), 10-7
Item Master

Oracle Configurator ITEM subschema, D-1
ITEM subschema

CZ_IMP_ITEM_MASTER, D-1

Index-16

import dependencies, 4-5
CZ_IMP_ITEM_PROPERTY, D-1
CZ_IMP_ITEM_PROPERTY_VALUE

BadItemPropertyValue, 4-9
import dependency, 4-5

CZ_IMP_ITEM_TYPE, D-1
importing, 4-1

CZ_IMP_ITEM_TYPE_PROPERTY, D-1
CZ_IMP_PROPERTY, D-1
CZ_ITEM_MASTERS, D-1
CZ_ITEM_PROPERTY_VALUES, D-2
CZ_ITEM_TYPE_PROPERTIES, D-2
CZ_ITEM_TYPES, D-2
CZ_PROPERTIES, D-2

Item Types
BOM, 5-6
defining an Item Type for import, 5-6

ITEM_KEY (database column), 13-4
ITEM_KEY_TYPE (database column), 13-4
item_name (XML element), 10-8

J
Java applet (legacy UIs)

CREATE_UI, 18-11
REFRESH_UI, 18-28
usage, 2-4

Java Applet UI
Generic Configurator User Interface type, 19-3

JDBC
connection cache, 20-3
thin drivers, 9-14

JPG files, 12-2
jrad_standalone (initialization parameter), 9-18
JServ

setup, 1-4

L
language (applicability parameter), 17-5
Languages

applicability parameter, 16-7
setting, 14-2

languages
multiple database instances, 14-2

LCE subschema
CZ_LCE_CLOBS, D-2
CZ_LCE_HEADERS, D-2
CZ_LCE_LINES, D-2
CZ_LCE_LOAD_SPECS, D-2
CZ_LCE_OPERANDS, D-2
CZ_LCE_TEXTS, D-2

LD_LIBRARY_PATH, 12-2
libczlce.so

file for Servlet directory, 12-2
links

database, 3-4
publication synchronization, 7-7
synchronizing data, 7-1

LIST_PRICE (database column), 13-5

list_price (XML element), 10-7
load balancing

general information, 20-4
log files

configuration session, 9-6
publications, 4-13
session, 9-4
troubleshooting errors, xxviii
viewing, B-4
written by the OC Servlet, 12-1

Logic for Configuration
Oracle Configurator LCE subschema, D-2
See also Active Model

LogicGen
CZ_DB_SETTINGS, 4-7

login parameters
Oracle Applications, 9-7

M
machines

multiple servers, 5-7
maintenance

database instance, 3-5
purging

CZ schema, 8-2
import procedure, 5-5
Purge Configurator Import Tables concurrent

program, C-4
Purge Configurator Tables concurrent

program, C-3
Purge To Date Configurator Import Tables

concurrent program, C-4
Purge To Run ID Configurator Import Tables

concurrent program, C-5
REDO_SEQUENCES, 8-3

MAJOR_VERSION
CZ_DB_SETTINGS, 4-8
usage, 4-11

MaximumErrors
CZ_DB_SETTINGS, 4-8
usage, 4-11

MemoryBulkSize
CZ_DB_SETTINGS, 4-8
usage, 4-12

message (XML element), 10-8
message_text (XML element), 10-9
message_type (XML element), 10-9
messages

validation, 21-4
MetaLink

URL for technical support, 5
Microsoft Internet Explorer

browser setup for deployment, 1-6
migrating

concurrent programs, C-20
CZ_IMP tables, 6-1
Functional Companions

concurrent programs, C-22
See also Configurator Extensions

Index-17

Migrate All Functional Companions, C-22
Migrate Configurator Data, C-21
Migrate Functional Companions for a Single

Model, C-23
Oracle Configurator 11i schema, 6-1
Setup Configurator Data Migration, C-20
tasks, 6-1

MINOR_VERSION
CZ_DB_SETTINGS, 4-8
usage, 4-12

MLS (Multiple Language Support)
BOM Item descriptions

importing, 14-2
ICX session ticket

Language setting, 14-2
importing

defining items, 5-6
Oracle Configurator Developer, 15-1
price_mult_items_mls_proc (procedure), 9-21
publishing, 14-2
support

initialization parameter, 9-21
translating data example, 14-3
translating text, 14-1

MODEL_FOR_ITEM (API), 17-42
MODEL_FOR_PUBLICATION_ID (API), 17-44
model_id (initialization parameter), 9-9, 9-19
model_quantity (initialization parameter), 9-19
Models

imported BOM Model
BOM_EXPLODER procedure, 4-15
common bill, 5-16
locking, 5-2
publishing, 16-5

locking, 16-8
MSG_DATA (database column), 13-5
MTL_SYSTEM_ITEMS (database table)

BOM synchronization, 7-2
importing decimal or integer quantities, 5-10
inventory item ID, 9-18, 9-19, 10-7
organization ID, 9-17, 9-20, 10-7
translation strings, 14-2

multiple currencies, 9-21
MULTISESSION

CZ_DB_SETTINGS, 4-8
usage, 4-12

Mutually Exclusive Items, 5-7
mutually exclusive rules, 5-4

N
Netscape Navigator, 1-6

browser setup for deployment, 1-6
NOUPDATE

populating and refreshing BOMs, 4-7, 4-14

O
OA_HTML, 9-24

default location of HTML directory, 12-2

OA_MEDIA
default location of Media directory, 12-2

OC Servlet
batch validation, 2-5
legacy Configurator user interfaces, 2-5
properties

customizing behavior, 2-5
session log, 9-4
UI server, 2-5

OE_ORDER_LINES_ALL (database table), 9-24, 9-26
ORAAPPS_INTEGRATE

CZ_DB_SETTINGS, 4-7
Oracle Applications

login parameters, 9-7
Oracle Configurator

deployment upgrades, 3-5
engine

See Oracle Configurator engine
log files, xxviii
release upgrade, 3-5
TAR template, xxvii
viewing parameters, C-2

Oracle Configurator Administrator
responsibility, 15-2

Oracle Configurator Developer
log files, xxviii
Multiple Language Support (MLS), 15-1
overview, 2-6
product support, xxvii
responsibility, 15-2
setting up

profile options, 15-1
unit testing, 2-7

Oracle Configurator engine
configuration, 2-5
definition, 2-5

Oracle Configurator schema
See CZ schema

Oracle Configurator Viewer
responsibility, 15-2

Oracle Forms Look
czFormTemplate.htm, 9-24

Oracle Order Management
exploding BOMS, 5-8
organization_id, 9-20
publishing Application parameter, 16-3

Oracle Rapid Install
overview, 2-2

Oracle Web Look
czBlafTemplate.htm, 9-24

OracleSequenceIncr
CZ_DB_SETTINGS, 4-8
REDO_SEQUENCES procedure, 8-3
usage, 4-12

ORG_ORGANIZATION_DEFINITIONS (database
column)

BOM synchronization, 7-4
ORGANIZATION_ID (database column)

BOM exploder, 9-17, 9-20
BOM synchronization, 7-3

Index-18

imported BOM, 5-10
termination message, 10-7

organization_id (initialization parameter), 9-9, 9-20
organization_id (XML element), 10-7
ORIG_SYS_REF (database column)

BOM synchronized field, 7-3
pricing usage, 13-4

overriding
default parameters, 9-4

P
packages

CZ_CF_API, 17-1
CZ_CONFIG_API_PUB, 17-1
CZ_modelOperations_pub, 18-1

param
XML element, 9-3

parameters
initialization

See initialization
See also publication applicability parameters
See also CZ_DB_SETTINGS (database table)

PARENT_CONFIG_ITEM_ID (database
column), 13-5

parent_line_id (XML element), 10-7
passwords

exploding a BOM, 5-8
initialization parameter for, 9-5
pwd (initialization parameter), 9-22

PATH
references files in Servlet directory, 12-2

PB subschema
CZ_EFFECTIVITY_SETS, D-2
CZ_EXT_APPLICATIONS, D-2
CZ_EXT_APPLICATIONS_V, D-2
CZ_MODEL_PUBLICATIONS, D-2
CZ_MODEL_USAGES, D-2
CZ_PB_CLIENT_APPS, D-2
CZ_PB_LANGUAGES, D-2
CZ_PB_MODEL_EXPORTS, D-2
CZ_PB_TEMP_IDS, D-2
CZ_PUBLICATION_USAGES, D-2
CZ_SRC_MODEL_PUBLICATIONS_V, D-2

performance
delete configuration data

database tasks, 1-3
effect of

preloading servlet, 9-3
restoring configurations, 21-2

LoadRunner, 1-6
preloading configuration model, 1-6
pricing interface package, 13-7
purge tables

database tasks, 1-3
PL/SQL

application code requiring use of VALIDATE
procedure, 11-3

functions
COMMON_BILL_FOR_ITEM, 17-9

CONFIG_MODEL_FOR_ITEM, 17-10
CONFIG_MODEL_FOR_PRODUCT, 17-14
CONFIG_MODELS_FOR_ITEMS, 17-12
CONFIG_MODELS_FOR_PRODUCTS, 17-16
CONFIG_UI_FOR_ITEM, 17-18
CONFIG_UI_FOR_ITEM_LF, 17-20
CONFIG_UI_FOR_PRODUCT, 17-22
CONFIG_UIS_FOR_ITEMS, 17-24
CONFIG_UIS_FOR_PRODUCTS, 17-26
ICX_SESSION_TICKET, 17-41
MODEL_FOR_ITEM, 17-42
MODEL_FOR_PUBLICATION_ID, 17-44
PUBLICATION_FOR_ITEM, 17-45
PUBLICATION_FOR_PRODUCT, 17-47
PUBLICATION_FOR_SAVED_

CONFIG, 17-49
UI_FOR_ITEM, 17-51
UI_FOR_PUBLICATION_ID, 17-53

procedures
COPY_CONFIGURATION, 17-28, 17-30
COPY_CONFIGURATION_AUTO, 17-32,

17-34
CREATE_JRAD_UI, 18-13
CREATE_RP_FOLDER, 18-9
CREATE_UI, 18-11
CZ_CONFIG_API_PUB.COPY_

CONFIGURATION, 17-30
CZ_CONFIG_API_PUB.COPY_

CONFIGURATION_AUTO, 17-34
CZ_CONFIG_API_PUB.VERIFY_

CONFIGURATION, 17-56
DEEP_MODEL_COPY, 18-15
DEFAULT_NEW_CFG_DATES, 17-36
DEFAULT_RESTORED_CFG_DATES, 17-37
DELETE_CONFIGURATION, 17-39
EXECUTE_POPULATOR, 18-17
GENERATE_LOGIC, 18-21
IMPORT_GENERIC, 18-24
IMPORT_SINGLE_BILL, 18-23
PUBLISH_MODEL, 18-26
REFRESH_JRAD_UI, 18-29
REFRESH_SINGLE_MODEL, 18-27
REFRESH_UI, 18-28
REPOPULATE, 18-30
VALIDATE, 17-54
VERIFY_CONFIGURATION, 17-56

populating BOMs
See importing

pop-up blocker
deployment tasks, 1-6

port
setting for the OC Servlet, 15-3

positional notation, 13-4, 13-6
POST (method), 9-2
preloading

configuration model, 1-6
servlet

use of initialization message, 9-3
Price Multiple Items

description of, 13-3

Index-19

MLS
description of, 13-3
pricing interface package procedure, 13-3

pricing interface package procedure, 13-3
use of database, 13-4

price_mult_items_mls_proc (initialization
parameter), 9-11, 9-21

price_mult_items_proc (initialization
parameter), 9-11, 9-21

price_single_item_proc (initialization
parameter), 9-11, 9-21

price_type (pricing procedure parameter), 13-3, 13-4
prices_calculated_flag (XML element), 10-5, 13-2
pricing

adjustments, 13-7
architecture, 13-1, 13-2
custom Web application, 13-1
discounts, 13-7
editing, 13-7
in an Oracle Configurator window, 13-1
interface package

definition, 13-1
procedures, 13-3

Oracle Configurator PRC subschema, D-2
parameters

callback, 9-11
through Advanced Pricing engine, 9-11
types of, 13-2

pricing_package_name (initialization
parameter), 9-11, 9-21

Product ID (publication attribute), 9-9, 16-5
Product Support, 0-xxvii, xxvii
product support

MetaLink, 5
product support for Oracle Configurator

Developer, xxvii
product_id (initialization parameter), 9-9, 9-21
product_key (applicability parameter), 17-5
PRODUCT_KEY (database column), 9-22

BOM synchronization, 7-3
production database instances, 3-3
profile options

BOM: Configurator URL of UI Manager, 19-1
Concurrent: Report Access Level to User, C-28
CZ: Fail BV if Configuration Changed, 11-8
CZ: Fail BV If Input Quantities Not

Maintained, 11-8
CZ: Populate Decimal Quantity Flags, 5-10
CZ: Publication Lookup Mode, 16-6, 16-9
CZ: Publication Usage, 16-9

PROJ subschema
CZ_COMMON_CHILDNDPROPS_V, D-2
CZ_CONVERSION_RELS_V, D-2
CZ_DATA_TYPES_V, D-2
CZ_DEVL_PROJECTS, D-2
CZ_EXPLMODEL_NODES_V, D-2
CZ_EXPLNODES_WITHIMAGES_V, D-2
CZ_FUNC_COMP_SPECS, D-2
CZ_IMP_DEVL_PROJECT, D-2
CZ_IMP_MODEL_REF_EXPLS, D-2

CZ_IMP_PS_NODES, D-2
CZ_MODEL_ARCHIVES_V, D-2
CZ_MODEL_BOMREF_COUNTS_V, D-2
CZ_MODEL_REF_EXPLS, D-3
CZ_MODELS_V, D-2
CZ_NODE_CAPTION_PROPERTIES_V, D-3
CZ_NODE_JAVA_PROPERTIES_V, D-3
CZ_NODE_NO_PROPERTIES_V, D-3
CZ_NODE_RULE_PROPERTIES_V, D-3
CZ_NODE_USER_PROPERTIES_V, D-3
CZ_POPULATORS, D-3
CZ_PS_NODES, D-3
CZ_PS_PROP_VALS, D-3
CZ_PSNODE_REFRULE_IMAGES_V, D-3
CZ_PSNODE_REFUI_IMAGES_V, D-3
CZ_PSNODE_RULE_REFS_V, D-3
CZ_PSNODE_WITH_UIREFS_V, D-3
CZ_SRC_DEVL_PROJECTS_V, D-3
CZ_SYSTEM_PROPERTIES_V, D-3
CZ_SYSTEM_PROPERTY_RELS_V, D-3
CZ_TEMPLATE_DEFS_V, D-3
CZ_TEMPLATE_MSGS_V, D-3
CZ_TERMINATE_MSGS, D-3
CZ_TGT_MODEL_PUBLICATIONS_V, D-3

Project Structure
Oracle Configurator PROJ subschema, D-2

PS_NODE_ID (database column), 13-4
ps_node_id (XML element), 10-8
PsNodeName

CZ_DB_SETTINGS, 4-8
usage, 4-12

PTO (Pick To Order)
implicit rules when importing, 5-4
preparing the BOM, 5-6

publication tables
CZ_EXT_APPLICATIONS, 16-4
CZ_MODEL_PUBLICATIONS, 16-4, 16-5
CZ_MODEL_USAGES, 16-5
CZ_PB_CLIENT_APPS, 16-5
CZ_PB_LANGUAGES, 16-5
CZ_PB_MODEL_EXPORTS, 16-5
CZ_PUBLICATION_USAGES, 16-5
CZ_UI_ACTIONS, 16-5
CZ_UI_DEFS, 16-5

PUBLICATION_FOR_ITEM (API), 17-45
PUBLICATION_FOR_PRODUCT (API), 17-47
PUBLICATION_FOR_SAVED_CONFIG

(API), 17-49
publication_mode (applicability parameter), 17-6
publication_mode (initialization parameter), 9-9,

9-22, 16-6
PublicationLogging

CZ_DB_SETTINGS, 4-9
usage, 4-13

publications
applicability parameters

Application, 16-7
Date Range, 16-7
determining availability, 16-6
Languages, 16-7

Index-20

Usages, 16-7
used in initialization message, 9-9
See also CZ_DB_SETTINGS (database table)
See also initialization parameters

attributes
database instance, 16-5
database instance definition, 16-6
determining access, 16-5
Model, 16-5
Model definition, 16-5
product, 16-5
product ID definition, 16-5
UI definition, 16-5, 16-6

configuration models, 16-1
copying without rules, 4-13
database linking, 16-6
defining, 16-4
definition, 16-1
deleting, 16-12
disabling, 16-12
editing, 16-12
example of maintaining publications, 16-14
host applications, 16-2
initialization message, 16-2, 16-6
log files, 4-13
maintaining, 16-10
mode

user access, 16-2
Oracle Configurator PB subschema, D-2
planning, 16-1
Product ID, 9-9, 16-5
records, 16-4
re-enabling, 16-12
remote, 16-4
selecting a publication, 16-2
source, 16-4
status

complete, 16-12
error, 16-12
pending, 16-12
processing, 16-12
publication pending update, 16-12

synchronizing, 7-1
tables used, 16-4
UI_DEF_ID, 16-13
updating, 16-13
user access, 16-2
See also publication tables
See also publishing

PUBLISH_MODEL (API), 18-26
publishing

across applications, 16-7
Add Application to Publication Applicability

List, C-6
Applications applicability parameter, C-6
configuration models, 16-1
decimal quantity flag, 5-11
definition, 16-1
enabling a server, 16-6
example of maintaining publications, 16-14

example of the publication process, 16-11
Generic Configurator User Interface, 2-4, 16-2
host application in initialization message, 9-15
host applications, 16-2
Model locking, 16-8
Multiple Language Support, 14-2
planning, 16-1
Product ID, 9-9, 16-5
profile option, 16-6
referenced Models, 16-9
status, 16-11
synchronization

multiple database instances, 7-1
Synchronize Cloned Source Data, C-25
Synchronize Cloned Target Data, C-24

Usage parameters, 9-17
See also publications
See also publication tables

PublishingCopyRules
CZ_DB_SETTINGS, 4-9
usage, 4-13

Purge Configurator Tables
concurrent programs, 5-5

purging
concurrent programs, 3-6, 8-2
DB maintenance package, 8-2

performance, 5-5
Purge Configurator Import Tables concurrent

program, C-4
Purge Configurator Tables concurrent

program, 8-2, C-3
Purge To Date Configurator Import Tables

concurrent program, C-4
Purge To Run ID Configurator Import Tables

concurrent program, C-5
imported data, 5-5
Purge Configurator Tables concurrent

program, C-3
Purge To Date Configurator Import Tables

concurrent program, C-4
Purge To Run ID Configurator Import Tables

concurrent program, C-5
pwd (initialization parameter), 9-5, 9-22

Q
QP

ATP interface, 13-8
integrating with Oracle Applications, 13-9
pricing method, 9-11

QUANTITY (database column), 13-5
quantity (XML element), 10-8

R
Rapid Install

See Oracle Rapid Install
read_only (initialization parameter), 9-22
REC_NBR

import control field, 4-3

Index-21

REC_STATUS
import control field, 4-4

reconfiguration
termination message, 21-4

record
custom data type, 17-6

REDO_SEQUENCES
DB maintenance package, 8-3
invoking by scripts, 8-3

References
BOM Models, 5-16
importing, 5-13
publishing, 16-9
refreshing BOM Models, 5-14

RefPartNbr
CZ_DB_SETTINGS, 4-9
usage, 4-13

REFRESH_JRAD_UI (API), 18-29
REFRESH_SINGLE_MODEL (API), 18-27
REFRESH_UI (API), 18-28
refreshing

BOM imported data, 5-11, 5-12
BOM referenced BOM Models, 5-14
concurrent programs, C-11
Refresh a Single Configuration Model, C-13
Refresh All Imported Configuration

Models, C-14
UseLocalTableInExtractionViews, 4-16

remote server
defining, enabling, or modifying, B-3

REPOPULATE (API), 18-30
republishing

See also publishing
requested_date (ATP procedure parameter), 13-6
requested_date (initialization parameter)

ATP callback parameter, 9-12
definition, 9-23

requests
viewing submitted concurrent program

requests, B-4
ResolvePropertyDataType

CZ_DB_SETTINGS, 4-9
Descriptive Elements, 4-14

importing BOM Properties, 5-6
usage, 4-14

responsibilities
Oracle Configurator Administrator, 15-2
Oracle Configurator Developer, 15-2
Oracle Configurator Viewer, 15-2

responsibility_id (initialization parameter), 9-5, 9-23
restored

configurations
Instantiability changes, 21-5

RestoredConfigDefaultModelLookupDate
CZ_DB_SETTINGS, 4-9
usage, 4-14

restoring
configurations

definition, 21-2
determining values, 17-37

effective date, 9-16
Model changed, 16-14
orders from previous publications, 16-14
performance, 21-2
revision number, 9-8
setting in CZ_DB_SETTINGS table, 4-14

restoring configurations
rules changed, 16-14

return URL
host application responsibility, 9-2
implementation, 10-10
specification in initialization message, 9-10
submission behavior, 10-3
template code, E-2

return_url (initialization parameter), 9-5, 9-10, 9-23
Revision Date/User

CZ_DB_SETTINGS, 4-9
usage, 4-15

rollback segment, 4-10
routers

security, 20-6
RP subschema

CZ_ACCESS_SUMMARY_LKV, D-3
CZ_ACTIONDISPLAYUPDT_LKV, D-3
CZ_ACTIONMODELINTER_LKV, D-3
CZ_ACTIONNAV_LKV, D-3
CZ_ACTIONRULENODES_LKV, D-3
CZ_ACTIONSESSIONCTRL_LKV, D-3
CZ_ACTIONSONMODELNODES_LKV, D-3
CZ_ACTIONSONREPOSITORYN_LKV, D-3
CZ_ACTIONTYPEGROUP_LKV, D-3
CZ_AMPM_LKV, D-3
CZ_ANYALLTRUE_LKV, D-3
CZ_ARCHIVE_REFS, D-3
CZ_ARCHIVES, D-3
CZ_ARCHIVES_PICKER_V, D-3
CZ_ASSOCIATEDMODELNODE_LKV, D-3
CZ_BASIC_LAYOUT_REGION_LKV, D-3
CZ_CAPCONFIGSYSPROP_LKV, D-3
CZ_CAPMSGSYSPROP_LKV, D-3
CZ_CAPNODESYSPROP_LKV, D-3
CZ_CFG_SAVEASBEHAVIOR_LKV, D-3
CZ_CFG_SEARCHCRITERIA_LKV, D-3
CZ_CFGEXT_ARGS_SPEC_TYPE_LKV, D-3
CZ_CFGEXT_EVENT_SCOPE_LKV, D-3
CZ_CFGEXT_INST_SCOPE_LKV, D-3
CZ_CFGEXT_SYSTEM_PARAMS_LKV, D-3
CZ_COMPAT_TEMPL_SIGS_V, D-3
CZ_COPYDESTINATION_LKV, D-3
CZ_COPYSOURCE_LKV, D-3
CZ_CREATEOPTIONPSNODETY_LKV, D-3
CZ_CREATEPSNODEPSNODETY_LKV, D-3
CZ_CREATEREPOSITORYOBJE_LKV, D-4
CZ_CREATERULEOBJECT_LKV, D-4
CZ_DATATYPE_LKV, D-4
CZ_DETAILEDRULETYPES_LKV, D-4
CZ_DETLSELECTIONSTATE_LKV, D-4
CZ_EFFECTIVITYMETHODS_LKV, D-4
CZ_EFFECTIVITYTYPE_LKV, D-4
CZ_EFFSETS_PICKER_V, D-4

Index-22

CZ_EVENTTYPES_LKV, D-4
CZ_EXNEXPRTYPE_LKV, D-4
CZ_FEATURETYPE_LKV, D-4
CZ_HORIZONTALALIGNMENT_LKV, D-4
CZ_HOURS_LKV, D-4
CZ_ICONLOOKUP_LKV, D-4
CZ_IMAGELOOKUPS_V, D-4
CZ_ITEMMASTEROPS_LKV, D-4
CZ_ITEMTYPE_LKV, D-4
CZ_ITEMTYPEOPERATOR_LKV, D-4
CZ_JAVASYSPROPVALS_LKV, D-4
CZ_LAYOUT_UI_STYLE_LKV, D-4
CZ_LAYOUTREGIONS_LKV, D-4
CZ_LISTLAYOUTREGIONS_LKV, D-4
CZ_LOCK_HISTORY, D-4
CZ_LOGICRULE_LKV, D-4
CZ_LOOKUP_VALUES_VL, D-4
CZ_LOOOKUP_VALUES, D-4
CZ_MDLNODE_CPDST_LKV, D-4
CZ_MDLNODE_CPSRC_LKV, D-4
CZ_MENUITEMTYPES_LKV, D-4
CZ_MENUTYPES_LKV, D-4
CZ_MINUTES_LKV, D-4
CZ_MODEL_REFERENCES_PICKER_V, D-4
CZ_MSGLISTLAYOUTREGIONS_LKV, D-4
CZ_NODEINSTANTIABILITY_LKV, D-4
CZ_NODELIST_LAYOUT_REGION_LKV, D-4
CZ_NODELISTLAYOUTREGIONS_LKV, D-4
CZ_OTHERCONTENT_LKV, D-4
CZ_PROPERTY_PICKER_V, D-4
CZ_PSNODETYPE_LKV, D-4
CZ_PUBLICATIONMODE_LKV, D-4
CZ_RECALCULATEPRICES_LKV, D-4
CZ_REPOS_TREE_V, D-4
CZ_REPOSCREATEOPS_LKV, D-4
CZ_REPOSITORY_MAIN_HGRID_V, D-4
CZ_REPOSITORYCOPYDESTIN_LKV, D-4
CZ_REPOSITORYCOPYMODELO_LKV, D-4
CZ_RP_BOM_MODELS_V, D-4
CZ_RP_DIRECTORY_V, D-4
CZ_RP_EFF_DIRECTORY_V, D-4
CZ_RP_ENTRIES, D-4
CZ_RP_PRJ_DIRECTORY_V, D-4
CZ_RP_USG_DIRECTORY_V, D-4
CZ_RPOBJECTTYPES_LKV, D-4
CZ_RTCONDCOMPAR_LKV, D-4
CZ_RTCONDOBJSETTINGS_LKV, D-5
CZ_RULERADIOGROUP_LKV, D-5
CZ_RULETYPECODES_LKV, D-5
CZ_RULEUNSATMESSAGECHOI_LKV, D-5
CZ_RULEVIOLATIONMESSAGE_LKV, D-5
CZ_SERVERS, D-5
CZ_SIMPLECONTROLS_LKV, D-5
CZ_SORTORDER_LKV, D-5
CZ_SOURCEENTITYTYPES_LKV, D-5
CZ_SUBTYPEBOMMODEL_LKV, D-5
CZ_SUBTYPEBOMOPTIONCLAS_LKV, D-5
CZ_SUBTYPEBOMSTDITEM_LKV, D-5
CZ_SUBTYPECOMPONENT_LKV, D-5
CZ_SUBTYPEFEATURE_LKV, D-5

CZ_SUBTYPEFEATUREGROUP_LKV, D-5
CZ_SUBTYPEOPTION_LKV, D-5
CZ_SUBTYPEPRODUCT_LKV, D-5
CZ_SUBTYPERESOURCE_LKV, D-5
CZ_SUBTYPETOTAL_LKV, D-5
CZ_UCT_PARNTCONTTY_LKV, D-5
CZ_UCTMESSAGETYPE_LKV, D-5
CZ_UI_HGRID_ACTIONS_LKV, D-5
CZ_UI_MSTTMP_BOMCON_UILAY_LKV, D-5
CZ_UI_MSTTMP_CNTRLLAYOUT_LKV, D-5
CZ_UI_MSTTMP_NBOMCON_UILAY_

LKV, D-5
CZ_UI_MSTTMP_PAG_CMP_LKV, D-5
CZ_UI_MSTTMP_PAG_DDNCTRL_LKV, D-5
CZ_UI_MSTTMP_PAG_NOC_LKV, D-5
CZ_UI_MSTTMP_PAG_REF_LKV, D-5
CZ_UI_MSTTMP_PAGINATION_LKV, D-5
CZ_UI_MSTTMP_PRINAV_LKV, D-5
CZ_UI_MSTTMP_SUPDIS_LKV, D-5
CZ_UI_MSTTMP_TMPUSG_LKV, D-5
CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV, D-5
CZ_USAGES_PICKER_V, D-5
CZ_VALIDRESULTFORCOMPON_LKV, D-5
CZ_VALIDRESULTFOROPTFEA_LKV, D-5
CZ_VERTICALALIGNMENT_LKV, D-5
CZ_VIEWBYSELECTION_LKV, D-5

Rule
Oracle Configurator RULE subschema, D-5

RULE subschema
CZ_COMBO_FEATURES, D-5
CZ_COMPATCELL_NODE_V, D-5
CZ_DES_CHART_CELLS, D-5
CZ_DES_CHART_COLUMNS, D-5
CZ_DES_CHART_FEATURES, D-5
CZ_EXPRESSION_NODES, D-5
CZ_FILTER_SETS, D-5
CZ_GRID_CELLS, D-5
CZ_GRID_COLS, D-5
CZ_GRID_DEFS, D-5
CZ_IMP_RULES, D-5
CZ_MODEL_ALL_RULEFOLDERS_V, D-6
CZ_MODELRULEFOLDER_IMAGES_V, D-5
CZ_NODE_USAGE_IN_RULES_V, D-6
CZ_NODETYPE_SYSPROPS_V, D-6
CZ_PSN_TYPED_RULE_REFS_V, D-6
CZ_RUL_TYPEDPSN_V, D-6
CZ_RULE_EXPRDETLS_V, D-6
CZ_RULE_EXPRESSION_V, D-6
CZ_RULE_FOLDERS, D-6
CZ_RULE_PARTICIPANTS_V, D-6
CZ_RULES, D-6
CZ_RULES_WITH_ARGS_V, D-6
CZ_RULETEMPLS_BYLABEL_V, D-6
CZ_TYPED_RULES_V, D-6

rules
importing, 1-3
importing legacy rules, 5-16

RUN_BILL_EXPLODER
CZ_DB_SETTINGS, 4-9
data refresh, 4-15

Index-23

usage, 4-15
RUN_ID

import control field, 4-3
runtime Oracle Configurator

architecture, 2-1
generated UI, 2-4
Generic Configurator User Interface, 2-4, 19-2
legacy Configurator UI, 2-4, 18-11, 18-28
overview, 2-2
Standard UI, 18-13, 18-29

S
save_config_behavior (initialization

parameter), 9-23
saved configurations

restoring in new Oracle Configurator
version, 16-14

sbm_flag (initialization parameter), 9-10, 9-23
SCHEMA

CZ_DB_SETTINGS, 4-7
schema

ADMN subschema tables, D-1
CNFG subschema tables, D-1
ITEM subschema tables, D-1
LCE subschema tables, D-2
PB subschema tables, D-2
PRC subschema tables, D-2
PROJ subschema tables, D-2
RULE subschema tables, D-5
UI subschema tables, D-6
verifying version, B-3

Secure Sockets Layer (SSL)
client, 20-1
setting up Oracle Configurator, 20-4

security
additional Oracle Applications instance, 20-7
AOL/J, 20-6
clusters, 20-6
connection parameters, 20-6
connection to runtime instance, 20-7
data extraction, 20-7
firewalls, 20-6
Function security, 15-1
ICX session ticket, 20-6
implementing Secure Sockets Layer, 20-4
routers, 20-6
separate machines, 20-6
walkin users, 20-6

selection_line_id (XML element), 10-8
SELLING_PRICE (database column), 13-5
SEQ_NBR (database column), 13-4
sequence

reset increments in REDO_SEQUENCES
procedure, 8-3

server
security, 20-6

servlet
See OC Servlet

Servlet directory, 12-2

session log, 9-4
SHIP_FROM_ORG_ID (database column), 9-26
ship_to_group_date (ATP procedure

parameter), 13-6
ship_to_org_id (ATP procedure parameter), 13-6
SHIP_TO_ORG_ID (database column), 9-24
ship_to_org_id (initialization parameter), 9-12, 9-24
shopping cart, 10-3
SOURCE_SERVER (database column)

BOM synchronization, 7-4
SRC_APPLICATION_ID

importing dependency, 4-6
standard_validation (XML element), 10-5
stateful application, 20-5
Statement Rules

importing, 5-16
status

rule import, 5-21
stickiness

effect on servlet connections, 20-5
router property, 20-5

subschemas
ADMN (Administrative), 4-1
CNFG (Configuration), 4-1
definition, 4-1
ITEM (Item-Master), 4-1
LCE (Logic for Configuration), 4-1
PB (Publication), 4-1
PROJ (Project Structure), 4-1
RP (Repository), 4-1
RULE (Rule), 4-1
TXT (Text), 4-1
TYP (Data Typing), 4-2
UI (User Interface), 4-2
XFR (Transfer specifications and control), 4-2

subtype
custom data type, 17-6

Support, 0-xxvii, xxvii
support

MetaLink, 5
SuppressSuccessMessage

CZ_DB_SETTINGS, 4-9
usage, 4-15

surrogate key fields
foreign surrogate key, 4-4
surrogate primary key, 4-5

synchronizing
BOM data, 7-1

multiple database instances, 1-2
CZ_MODEL_PUBLICATIONS, 16-4
EXPLOSION_TYPE setting, 7-4
import, 5-5, 5-12
publishing to another database, 7-1
tasks, 7-2
validation criteria, 7-2

System Item
flexfields, 4-13

system testing
configuration models, 3-6

Index-24

T
tables

administration information, D-1
configuration information, D-1
custom data type, 17-6
data type information, D-6
import information, D-7
Item information, D-1
logic generation information, D-2
pricing information, D-2
project information, D-2
publication information, D-2
repository action information, D-3
rule import, 5-20
Rule information, D-5
runtime text information, D-6
UI information, D-6

TAR, xxvii
TCP/IP

time limit, 20-5
Technical Assistance Request (TAR), xxvii
technical support

MetaLink, 5
template_url (initialization parameter), 9-24
terminate (XML element), 10-2
terminate_id (initialization parameter), 9-24
terminate_msg_behavior (initialization

parameter), 9-25
termination

ID parameter, 9-24
message

behavior, 9-25
conditions, 10-2
for guided selling, 9-24, 10-3
passed to return URL, 9-11, 10-10
reconfigured item, 21-4
structure, 10-2
syntax, 10-2

test
environment, 3-6
page example, 9-5, 13-9

testing
system, 3-6

thin drivers, 9-14
TimeImport

CZ_DB_SETTINGS, 4-9
usage, 4-16

timeouts
database connection, 20-5
JServ

default, 20-5
router, 20-5

TOP_ITEM_ID (database column)
BOM synchronization, 7-3, 7-4
identifying a BOM Model for import, 5-10

total_price (XML element), 10-5
transfer specifications

See CZ_XFR control tables
translations

Item descriptions, 14-2

XML documents, 14-4
See also MLS (Multiple Language Support)

troubleshooting
analyzing errors, xxviii

tuning
CIO, 2-5

TYP subschema
CZ_DATA_SUBTYPES_V, D-6
CZ_NODE_DISPCOND_PROPERTIES_V, D-6
CZ_NODETYPE_PROPERTIES_V, D-6
CZ_PARENT_CHILD_RELS_V, D-6
CZ_TYPE_RELATIONSHIPS, D-6
CZ_VALID_RESULT_TYPES_V, D-6

U
UI Server

element of the OC Servlet, 2-5
UI subschema

CZ_IMP_LOCALIZED_TEXTS, D-6
CZ_JRAD_CHUNKS, D-6
CZ_LOCALIZED_TEXTS, D-6
CZ_PS_UI_CTRL_MAPS, D-6
CZ_PSNODETYPE_IMAGES_V, D-6
CZ_RULETYPE_IMAGES_V, D-6
CZ_UI_ACTIONS, D-6
CZ_UI_COLLECT_TMPLS_V, D-6
CZ_UI_CONT_TYPE_TEMPLS, D-6
CZ_UI_CONT_TYPE_TEMPLS_VV, D-6
CZ_UI_DEFS, D-6
CZ_UI_ELEMENT_ATTRIBUTES_V, D-6
CZ_UI_IMAGES, D-6
CZ_UI_NODE_PROPS, D-7
CZ_UI_NODES, D-6
CZ_UI_PAGE_ELEMENTS, D-7
CZ_UI_PAGE_REFS, D-7
CZ_UI_PAGE_SETS, D-7
CZ_UI_PAGES, D-7
CZ_UI_PATHED_IMAGES_V, D-7
CZ_UI_PROPERTIES, D-7
CZ_UI_REF_TEMPLATES, D-7
CZ_UI_REFS, D-7
CZ_UI_TEMPLATES, D-7
CZ_UI_TEMPLATES_VV, D-7
CZ_UI_TYPEDPSN_V, D-7
CZ_UI_XMLS, D-7
CZ_UIDEF_SIGNATURE_TEMPLS_V, D-6
CZ_UIELEMENT_IMAGES_V, D-6
CZ_UITEMPL_CONTROLS_V, D-6
CZ_UITEMPL_MESSAGES_V, D-6
CZ_UITEMPL_UTILITY_V, D-6
CZ_UITEMPLS_FOR_PSNODES_V, D-6

UI_DEF_ID (database column), 9-25
ui_def_id (initialization parameter), 9-5, 9-8, 9-25
UI_FOR_ITEM (API), 17-51
UI_FOR_PUBLICATION_ID (API), 17-53
UI_NODE_NAME_CONCAT_CHARS

CZ_DB_SETTINGS, 4-9
usage, 4-16

ui_type (initialization parameter), 9-5, 9-25

Index-25

UISERVER
CZ_DB_SETTINGS, 4-7

unit testing
configuration models, 3-5

uom (XML element), 10-8
UOM_CODE (database column), 13-5
updating

BOM Models, 5-12
BOM referenced Models, 5-14
CZ_SERVERS, 7-6
during import, 4-7
logic generation, 4-11
pricing, 13-5
property values, 4-9

upgrading
Oracle Configurator, 3-5

US language directory, 9-24
usage_name (applicability parameter), 17-6
Usages

config_effective_usage (initialization
parameter), 9-17

initialization message, 16-3
planning publications, 16-2
publication applicability parameter, 16-7

UseLocalTableInExtractionViews
CZ_DB_SETTINGS, 4-9
usage, 4-16

user (initialization parameter), 9-5, 9-25
user access

publications mode, 16-2
User Interface

communication with Active Model, 2-5
Configurator Extensions, 2-5
generated UI, 2-4
Generic Configurator User Interface, 19-2
language, 14-2
legacy Configurator UI, 2-4, 18-11, 18-28
Oracle Configurator UI subschema, D-6
publishing tables, 16-10
restrictions, 12-2
runtime types, 2-4
Standard UI, 18-13, 18-29

USER_ID (database column), 9-26
user_id (initialization parameter), 9-26
UTL_HTTP package, 17-7
UtlHttpTransferTimeout

CZ_DB_SETTINGS, 4-9
usage, 4-16

V
valid_configuration (XML element), 10-6
VALIDATE (API), 17-54
VALIDATE (procedure)

used for batch validation, 11-1
validation

rule import, 5-21
synchronizing criteria, 7-2

VERIFY_CONFIGURATION (API), 17-56
verifying

data import, 5-12
schema version, B-3

W
warehouse_id (ATP procedure parameter), 13-6
warehouse_id (initialization parameter), 9-12, 9-26
Web deployment, 19-1

X
XFR subschema

CZ_XFR_FIELDS, D-7
CZ_XFR_PROJECT_BILLS, D-7
CZ_XFR_RUN_INFOS, D-7
CZ_XFR_RUN_RESULTS, D-7
CZ_XFR_STATUS_CODES, D-7
CZ_XFR_TABLES, D-7

XFR_ control tables
See CZ_XFR control tables

XML
translating data, 14-4
use for initialization message, 9-2
use of quotation marks, 9-4

XML elements
DTD for, 10-2
initialize, 9-2
param, 9-3
termination message

atp_date, 10-7
atp-rollup-date, 10-7
bom_item_type, 10-7
bom-quantity, 10-7
complete_configuration, 10-4
component_code, 10-7, 10-8
config_header_id, 10-4
config_messages, 10-8
config_outputs, 10-7
config_rev_nbr, 10-4
discounted_price, 10-7
exit, 10-4
inventory_item_id, 10-7
item_name, 10-8
list_price, 10-7
message, 10-8
message_text, 10-9
message_type, 10-9
organization_id, 10-7
parent_line_id, 10-7
prices_calculated_flag, 10-5
ps_node_id, 10-8
quantity, 10-8
selection_line_id, 10-8
standard_validation, 10-5
terminate, 10-2
total_price, 10-5
uom, 10-8
valid_configuration, 10-6

Index-26

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	Product Support

	Part I Introduction
	1 Implementation Tasks
	1.1 General Implementation Tasks
	1.2 Database Tasks
	1.2.1 Required Database Tasks
	1.2.2 Optional Database Tasks

	1.3 Integration Tasks
	1.3.1 Required Tasks for All Integrations
	1.3.2 Optional Integration Tasks
	1.3.3 Tasks for Custom Integration

	1.4 Model Development Tasks
	1.4.1 Required Tasks for Model Development
	1.4.2 Optional Tasks for Model Development

	1.5 Deployment Tasks
	1.5.1 Required Tasks for All Deployments
	1.5.2 Optional Tasks for Deployment
	1.5.3 Tasks for Custom Deployments

	2 Configurator Architecture
	2.1 Overview
	2.2 Runtime Oracle Configurator
	2.2.1 Access
	2.2.1.1 Type of Host Application
	2.2.1.2 Login to Host Application
	2.2.1.3 Invocation of Oracle Configurator by Host Application
	2.2.1.4 Incorporation of Oracle Configurator in the Host Application’s UI

	2.2.2 Oracle Configurator Security on Publicly Accessible Web Servers
	2.2.3 Runtime UI Types
	2.2.4 Oracle Configurator Servlet
	2.2.4.1 UI Server
	2.2.4.2 Configuration Interface Object (CIO)
	2.2.4.3 Oracle Configurator Engine

	2.3 Oracle CZ Schema
	2.4 Oracle Configurator Developer
	2.4.1 Access
	2.4.2 Types of Configuration Models
	2.4.3 Unit Testing

	2.5 Multi-Tier Architecture
	2.5.1 Runtime Oracle Configurator
	2.5.2 Oracle Configurator Developer Three Tiers

	Part II Data
	3 Database Instances
	3.1 Database Uses
	3.2 Multiple Database Instances
	3.2.1 Reasons for Multiple Database Instances
	3.2.1.1 Import Source and Target
	3.2.1.2 Publication Source and Target
	3.2.1.3 Decommissioning a Database Instance
	3.2.1.4 Migration Source and Target
	3.2.1.5 BOM Synchronization Source and Target

	3.2.2 Linking Multiple Database Instances
	3.2.3 Instance and Host System Names

	3.3 Model Development
	3.4 Maintenance
	3.5 Production
	3.5.1 System Testing
	3.5.2 Deploying a Model

	4 The CZ Schema
	4.1 Characteristics of the Oracle CZ Schema
	4.1.1 Online Tables and Integration Tables
	4.1.2 CZ Subschemas
	4.1.3 Public Synonyms
	4.1.4 Schema Customization

	4.2 Import Tables
	4.2.1 Import Control Fields
	4.2.2 Online Data Fields
	4.2.3 Surrogate Key Fields
	4.2.4 Dependencies Among Import Tables

	4.3 Control Tables
	4.4 CZ_DB_SETTINGS Table
	4.4.1 Accessing the CZ_DB_SETTINGS Table
	4.4.2 Organization of the CZ_DB_SETTINGS Table
	4.4.3 CZ_DB_SETTINGS Parameters
	4.4.3.1 AltBatchValidateURL
	4.4.3.2 BadItemPropertyValue
	4.4.3.3 BatchSize
	4.4.3.4 BOM_REVISION
	4.4.3.5 CommitSize
	4.4.3.6 DISPLAY_INSTANCE_NAME
	4.4.3.7 FREEZE_REVISION
	4.4.3.8 GenerateGatedCombo
	4.4.3.9 GenerateUpdatedOnly
	4.4.3.10 GenStatisticsBOM
	4.4.3.11 GenStatisticsCZ
	4.4.3.12 MAJOR_VERSION
	4.4.3.13 MaximumErrors
	4.4.3.14 MemoryBulkSize
	4.4.3.15 MINOR_VERSION
	4.4.3.16 MULTISESSION
	4.4.3.17 OracleSequenceIncr
	4.4.3.18 PsNodeName
	4.4.3.19 PublicationLogging
	4.4.3.20 PublishingCopyRules
	4.4.3.21 RefPartNbr
	4.4.3.22 ResolvePropertyDataType
	4.4.3.23 RestoredConfigDefaultModelLookupDate
	4.4.3.24 Revision Date and User
	4.4.3.25 RUN_BILL_EXPLODER
	4.4.3.26 SuppressSuccessMessage
	4.4.3.27 TimeImport
	4.4.3.28 UI_NODE_NAME_CONCAT_CHARS
	4.4.3.29 UseLocalTableInExtractionViews
	4.4.3.30 UtlHttpTransferTimeout

	5 Populating the CZ Schema
	5.1 Overview
	5.1.1 Types of Data Stored in the CZ Schema During Development and Runtime
	5.1.2 Means of Populating the CZ Schema
	5.1.3 CZ_IMP Tables

	5.2 Standard Import
	5.2.1 Inventory and BOM Data That Can Be Imported
	5.2.2 Overall Standard Import Procedure
	5.2.3 Determining the Import Data Source Instance and the Target Instance
	5.2.4 Preparing the Data for Import
	5.2.4.1 Defining Inventory Items for Configuration
	5.2.4.2 Creating BOM Models for Configuration

	5.2.5 Defining and Enabling a Server for Import
	5.2.6 Exploding BOM Models in Oracle Applications
	5.2.6.1 Exploding a BOM Model in Release 11i
	5.2.6.2 Exploding a BOM Model in Release 10.7 or 11.0

	5.2.7 Controlling the Data for Import
	5.2.7.1 Importing Data Into Specific Tables
	5.2.7.2 Importing Data from Specific Fields
	5.2.7.3 Populating Import Tables
	5.2.7.4 Modifying EXPLOSION_TYPE
	5.2.7.5 Identifying a BOM Model for Import
	5.2.7.6 Importing Decimal or Integer Quantities
	5.2.7.7 Importing Minimum and Maximum Instances

	5.2.8 Importing the Data
	5.2.9 Verifying the Data Import
	5.2.10 Refreshing Imported Data
	5.2.10.1 Refreshing Imported Data Recommendations
	5.2.10.2 Refreshing Procedures

	5.2.11 Importing a BOM Model That Contains Other BOM Models
	5.2.12 Refreshing a BOM Model That Contains Other BOM Models
	5.2.12.1 BOM Model References Have Changed
	5.2.12.2 BOM Models Referenced by Previously Imported BOM Model Have Changed

	5.2.13 BOM Model with a Common Bill

	5.3 Rule Import
	5.3.1 Rule Import Procedure
	5.3.2 Populating CZ_IMP_RULES
	5.3.3 Populating CZ_IMP_LOCALIZED_TEXTS
	5.3.4 Rule Import Tables
	5.3.5 Stages of Rule Import
	5.3.6 Rule Validation

	5.4 Custom Import
	5.4.1 Overview of Custom Data Import
	5.4.2 Identifying Data for a Custom Data Import
	5.4.3 Custom Import Procedure
	5.4.4 Required ASCII File Format for Custom Import

	6 Migrating Data
	6.1 Overview
	6.2 Migrating Data from Another CZ Schema

	7 Synchronizing Data
	7.1 Overview
	7.2 Synchronizing BOM Model Data
	7.2.1 The BOM Model Synchronization Process
	7.2.2 Checking BOM and Model Similarity
	7.2.3 Criteria for BOM Model Similarity
	7.2.4 Result of Synchronizing BOM Models

	7.3 Synchronizing Publication Data
	7.3.1 Synchronizing Publication Data after a Database Instance is Cloned
	7.3.2 Example of Synchronizing Publication Data
	7.3.2.1 CZ_SERVERS Table
	7.3.2.2 CZ_MODEL_PUBLICATIONS Table
	7.3.2.3 Example Publication Data Before Cloning
	7.3.2.4 Example of Synchronizing Publication Data on a Cloned Target
	7.3.2.5 Example of Synchronizing Publication Data on a Cloned Source

	8 CZ Schema Maintenance
	8.1 Overview
	8.2 Refreshing or Updating the Production CZ Schema
	8.3 Purging Configurator Tables
	8.3.1 Purge Configurator Tables
	8.3.2 Purge Configurator Import Tables
	8.3.3 Purge To Date Configurator Import Tables
	8.3.4 Purge To Run ID Configurator Import Tables

	8.4 Redoing Sequences

	Part III Integration
	9 Session Initialization
	9.1 Overview
	9.1.1 Definition of Session Initialization
	9.1.2 Responsibilities of the Host Application

	9.2 Setting Parameters
	9.2.1 Parameter Syntax
	9.2.1.1 Omitting Parameters or Values

	9.2.2 Typical Parameter Values
	9.2.3 Minimal Test of Initialization
	9.2.4 Parameter Validation
	9.2.5 Logging of Parameter Use

	9.3 Initialization Parameter Types
	9.3.1 Login Parameters
	9.3.2 Model Identification Parameters
	9.3.2.1 Identifying the User Interface Definition
	9.3.2.2 Identifying the Configuration
	9.3.2.3 Identifying the Model

	9.3.3 Model Publication Identification Parameters
	9.3.4 Support of Multiple Instantiation
	9.3.5 Return URL Parameter
	9.3.6 Pricing Parameters
	9.3.7 ATP Parameters
	9.3.8 Arbitrary Parameters
	9.3.9 Parameter Compatibility

	9.4 Initialization Parameter Descriptions

	10 Session Termination
	10.1 Overview
	10.1.1 Relationship to Initialization Message
	10.1.2 Definition of Session Termination

	10.2 XML Message Structure
	10.3 Submission
	10.3.1 Configuration Status
	10.3.1.1 Subelements for Configuration Status

	10.3.2 Configuration Outputs
	10.3.2.1 Subelements for Configuration Outputs

	10.3.3 Configuration Messages
	10.3.3.1 Subelements for Configuration Messages

	10.4 Cancellation
	10.5 Error
	10.6 The Return URL
	10.6.1 Specifying the Return URL
	10.6.2 Implementing the Return URL

	11 Batch Validation
	11.1 Overview
	11.2 Passing the Batch Validation Message
	11.3 Calling the CZ_CF_API.VALIDATE Procedure
	11.4 Batch Validation Failure
	11.5 Skipping Batch Validation
	11.5.1 PL/SQL Callback
	11.5.2 PL/SQL Callback and Models that use Configurator Extensions

	12 Custom Integration
	12.1 General Directory Structure
	12.2 Files for the Servlet Directory
	12.3 Files for the HTML Directory
	12.4 Files for the Media Directory

	13 Pricing and ATP in Oracle Configurator
	13.1 Overview
	13.2 Runtime Oracle Configurator Pricing Architecture
	13.2.1 Pricing Callback Interface Package
	13.2.2 Pricing Callback Interface
	13.2.2.1 Use of the Database in the Price Multiple Items Procedures
	13.2.2.2 Examples of the Pricing Callback Interface

	13.2.3 ATP Callback Interface
	13.2.3.1 Use of the Database with the ATP Callback Interface
	13.2.3.2 Examples of the ATP Callback Interface

	13.3 Runtime Pricing Behavior
	13.4 Integration of Pricing and ATP with Oracle Configurator
	13.4.1 Database Compatibility
	13.4.2 Initialization Parameters

	13.5 Controlling Pricing and ATP in a Runtime Oracle Configurator
	13.5.1 Displaying Prices and ATP Information
	13.5.2 Updating Prices
	13.5.3 Examples of Controlling Pricing
	13.5.3.1 Example: List Prices Only
	13.5.3.2 Example: Selling Prices Only

	14 Multiple Language Support
	14.1 Introduction
	14.2 Data Import
	14.2.1 New Models
	14.2.2 Existing Models

	14.3 Installed Languages in Multiple Server Environments
	14.4 Deploying a User Interface that Supports MLS
	14.5 Translating Data in CZ_LOCALIZED_TEXTS
	14.6 Translating XML Documents

	Part IV Configuration Model
	15 Controlling the Development Environment
	15.1 Setting up Oracle Configurator Developer
	15.2 Setting up Access to Configurator Developer
	15.3 Oracle Configurator Developer
	15.3.1 Model Development
	15.3.2 Runtime Testing

	16 Publishing Configuration Models
	16.1 Planning Publications
	16.1.1 Designing A Project
	16.1.2 Preventing Publication Access Errors

	16.2 How Host Applications Select a Published Model
	16.2.1 Example: How a Usage Affects Model Structure, Rules, and Model Publications at Runtime

	16.3 Defining a Publication
	16.3.1 Source and Remote Publications
	16.3.2 Tables Used in Publishing
	16.3.3 Publication Details
	16.3.3.1 Model
	16.3.3.2 Product ID
	16.3.3.3 User Interface
	16.3.3.4 Target Database Instance
	16.3.3.5 Mode

	16.3.4 Publication Applicability Parameters
	16.3.4.1 Applications
	16.3.4.2 Languages
	16.3.4.3 Usages
	16.3.4.4 Date Range

	16.4 Publishing a Configuration Model
	16.4.1 Publication Profile Options
	16.4.2 Publishing and Model References
	16.4.3 Copying User Interface Data
	16.4.4 Copying Model Rules
	16.4.5 Checking BOM Model and Configuration Model Similarity

	16.5 Maintaining Publications
	16.5.1 Publication Status
	16.5.2 Editing Publications
	16.5.3 Disabling, Deleting, and Re-enabling Publications
	16.5.4 Republishing
	16.5.5 Determining Publishing Information
	16.5.6 Retrieving Orders from Previously Published Models
	16.5.7 Synchronizing Publication Data
	16.5.8 Example of Maintaining Publications

	17 Programmatic Tools for Development
	17.1 Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages
	17.1.1 Purpose of the Packages
	17.1.2 Overview of Procedures and Functions
	17.1.3 Installation of the Packages
	17.1.4 References for Working with PL/SQL Procedures and Functions

	17.2 Choosing the Right Tool for the Job
	17.2.1 Establishing Session Identity
	17.2.2 Setting Configuration Dates
	17.2.3 Validating Configurations
	17.2.4 Verifying Configurations
	17.2.5 Copying and Deleting Configurations
	17.2.6 Working with Common Bills
	17.2.7 Identifying Publications
	17.2.7.1 Functions for Identifying Publications
	17.2.7.2 Applicability Parameters
	17.2.7.3 List Parameters

	17.3 Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages
	17.3.1 Custom Data Types
	17.3.2 Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages

	COMMON_BILL_FOR_ITEM
	Syntax and Parameters

	CONFIG_MODEL_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODELS_FOR_ITEMS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODEL_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODELS_FOR_PRODUCTS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_ITEM_LF
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UIS_FOR_ITEMS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UIS_FOR_PRODUCTS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	COPY_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	CZ_CONFIG_API_PUB.COPY_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters

	COPY_CONFIGURATION_AUTO
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	DEFAULT_NEW_CFG_DATES
	Considerations Before Running
	Prerequisites
	Timing
	Dependencies
	Restrictions and Limitations

	Syntax and Parameters
	Considerations After Running
	Results

	DEFAULT_RESTORED_CFG_DATES
	Considerations Before Running
	Prerequisites
	Timing
	Dependencies
	Restrictions and Limitations

	Syntax and Parameters
	Considerations After Running
	Results

	DELETE_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Troubleshooting

	ICX_SESSION_TICKET
	Considerations Before Running
	Prerequisites
	Timing

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	MODEL_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	MODEL_FOR_PUBLICATION_ID
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	PUBLICATION_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	PUBLICATION_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	PUBLICATION_FOR_SAVED_CONFIG
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	UI_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters
	Considerations After Running
	Results

	UI_FOR_PUBLICATION_ID
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters
	Example

	VALIDATE
	Considerations Before Running
	Syntax and Parameters
	Example
	Considerations After Running
	Results

	CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	18 Programmatic Tools for Maintenance
	18.1 Overview of the CZ_modelOperations_pub Package
	18.1.1 Purpose of the Package
	18.1.2 Installation of the Package
	18.1.3 References for Working with PL/SQL Procedures and Functions

	18.2 Choosing the Right Tool for the Job
	18.3 Queries to Support the CZ_modelOperations_pub Package
	18.3.1 Querying for Model and Folder IDs
	18.3.2 Querying for User Interface IDs
	18.3.3 Querying for Referenced User Interface IDs
	18.3.4 Querying for Populators
	18.3.5 Querying for Error and Warning Information

	18.4 Reference for the CZ_modelOperations_pub Package
	18.4.1 Custom Data Types
	18.4.2 API Version Numbers
	18.4.2.1 Format of API Version Numbers
	18.4.2.2 Current API Version Number for This Package
	18.4.2.3 Checking for Incompatible API Calls

	18.4.3 Procedures and Functions in the CZ_modelOperations_pub Package

	CREATE_RP_FOLDER
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	CREATE_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	CREATE_JRAD_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	DEEP_MODEL_COPY
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	EXECUTE_POPULATOR
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	FORCE_UNLOCK_MODEL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	FORCE_UNLOCK_TEMPLATE
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	GENERATE_LOGIC
	Considerations Before Running
	Alternatives

	Syntax and Parameters
	Example

	IMPORT_SINGLE_BILL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	IMPORT_GENERIC
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	PUBLISH_MODEL
	Considerations Before Running
	Restrictions and Limitations
	Alternatives

	Syntax and Parameters

	REFRESH_SINGLE_MODEL
	Considerations Before Running
	Syntax and Parameters

	REFRESH_UI
	Considerations Before Running
	Restrictions and Limitations
	Alternatives

	Syntax and Parameters

	REFRESH_JRAD_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	REPOPULATE
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	REPUBLISH_MODEL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	RP_FOLDER_EXISTS
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	Part V Runtime Configurator
	19 User Interface Deployment
	19.1 Calling an Embedded Oracle Configurator
	19.1.1 Generic Configurator User Interfaces
	19.1.1.1 Criteria for Launching a Generic Configurator User Interface
	19.1.1.2 Generic Configurator UI Types
	19.1.1.3 Setting Up a Generic Configurator User Interface
	19.1.1.4 Generic Configurator User Interfaces: Additional Features and Limitations

	19.1.2 Keyboard Access in the Runtime Configurator

	20 Deployment Considerations
	20.1 Deployment Strategies
	20.2 Architectural Considerations
	20.3 Server Considerations
	20.3.1 Connection Pooling

	20.4 Establishing End User Access
	20.5 Determining the Runtime User Interface
	20.6 Load Balancing and Secure Sockets Layer
	20.7 Network Considerations
	20.7.1 Firewalls and Timeouts
	20.7.2 Router Timeouts
	20.7.3 Miscellaneous Issues

	20.8 Security Considerations
	20.8.1 Internet User Access
	20.8.2 Additional Security Precautions

	20.9 Multiple Language Support Considerations
	20.10 Performance Considerations

	21 Managing Configurations
	21.1 About Configurations
	21.1.1 Saving a Configuration

	21.2 Configuration Identity
	21.3 Host Applications and Oracle Configurator
	21.4 Batch Validation of a Configured Item
	21.5 Reconfiguring a Configured Item
	21.6 Copying a Host Application’s Entity
	21.7 Passing a Saved Configuration to Another Host Application
	21.8 Deleting a Host Application Entity

	Part VI Appendices
	A Terminology
	B Common Tasks
	B.1 Running Configurator Concurrent Programs
	B.2 Connecting to a Database Instance
	B.3 Verifying CZ Schema Version
	B.4 Server Administration
	B.5 Viewing Status of Configurator Concurrent Programs Requests
	B.6 Viewing Log Files
	B.7 Checking BOM Model and Configuration Model Similarity

	C Concurrent Programs
	C.1 Configurator Administration Concurrent Programs
	C.1.1 View Configurator Parameters
	C.1.2 Modify Configurator Parameters
	C.1.3 Purge Configurator Tables
	C.1.4 Purge Configurator Import Tables
	C.1.5 Purge To Date Configurator Import Tables
	C.1.6 Purge To Run ID Configurator Import Tables

	C.2 Server Administration Concurrent Programs
	C.2.1 Add Application to Publication Applicability List
	C.2.2 Define Remote Server
	C.2.3 Enable Remote Server
	C.2.4 View Servers
	C.2.5 Modify Server Definition

	C.3 Configuration Model Publication Concurrent Programs
	C.3.1 Process Pending Publications
	C.3.2 Process a Single Publication

	C.4 Populate and Refresh Configuration Models Concurrent Programs
	C.4.1 Populate Configuration Models
	C.4.1.1 Populate Configuration Models Concurrent Program Error Messages

	C.4.2 Refresh a Single Configuration Model
	C.4.3 Refresh All Imported Configuration Models
	C.4.4 Disable/Enable Refresh of a Configuration Model
	C.4.5 Import Configuration Rules

	C.5 Model Synchronization Concurrent Programs
	C.5.1 Check Model/Bill Similarity
	C.5.2 Check All Models/Bills Similarity
	C.5.3 Synchronize All Models
	C.5.4 Model/Bill Similarity Check Report

	C.6 Execute Populators in Model Concurrent Program
	C.7 Migration Concurrent Programs
	C.7.1 Setup Configurator Data Migration
	C.7.2 Migrate Configurator Data

	C.8 Migrate Functional Companions
	C.8.1 Migrate All Functional Companions
	C.8.2 Migrate Functional Companions for a Single Model

	C.9 Publication Synchronization Concurrent Programs
	C.9.1 Synchronize Cloned Target Data
	C.9.2 Synchronize Cloned Source Data
	C.9.3 Select Tables to be Imported
	C.9.4 Show Tables to be Imported

	C.10 View Concurrent Program

	D CZ Subschemas
	D.1 Oracle Configurator Subschemas
	D.1.1 ADMN Administrative Tables
	D.1.2 CNFG Configuration Tables
	D.1.3 ITEM Item-Master Tables
	D.1.4 LCE Logic for Configuration Tables
	D.1.5 PB Publication Tables
	D.1.6 PRC Pricing Tables
	D.1.7 PROJ Project Structure Tables
	D.1.8 RP Repository Tables
	D.1.9 RULE Rule Tables
	D.1.10 TXT - Text Tables
	D.1.11 TYP - Data Typing
	D.1.12 UI User Interface Tables
	D.1.13 XFR Transfer Specifications and Control Tables

	E Code Examples
	E.1 Pricing and ATP Callback Procedures
	E.2 Implementing a Return URL Servlet

	Glossary
	API
	applet
	Archive Path
	argument
	ATO
	ATP
	base node
	bill of material
	Bills of Material
	binding
	BOM
	BOM item
	BOM Model
	BOM Model node
	BOM Option Class node
	BOM Standard Item node
	Boolean Feature
	bug
	build
	CDL
	CIO
	command event
	Comparison Rule
	Compatibility Rule
	Compatibility Table
	component
	Component
	Component Set
	concurrent program
	configuration
	configuration attribute
	configuration engine
	Configuration Interface Object
	configuration model
	configuration rule
	configuration session
	configurator
	Configurator Extension
	Configurator Extension Archive
	connectivity
	Connector
	Constraint Definition Language
	Container Model
	Contributes to
	Consumes from
	count
	CTO
	customer
	customer requirements
	CZ
	CZ schema
	data import
	data source
	DBMS
	default
	Defaults relation
	defect
	Design Chart
	developer
	Developer
	DHTML
	discontinued item
	element
	end user
	enterprise
	environment
	ERP
	event
	Excludes relation
	feature
	Feature
	functional specification
	generated logic
	guided buying or selling
	host application
	HTML
	implementation
	implementer
	Implies relation
	import server
	import tables
	initialization message
	Instance
	instance
	instantiate
	integration
	integration testing
	item
	Item
	Item Master
	Item Type
	Java
	Java class
	JavaServer Pages
	JSP
	legacy data
	listener
	load
	log file
	Logic Rule
	maintainability
	maintenance
	Metalink
	method
	Model
	model
	model-driven UI
	model structure
	Negates relation
	node
	Numeric Rule
	object
	OC
	OCD
	option
	Option
	Oracle Configuration Interface Object (CIO)
	Oracle Configurator
	Oracle Configurator architecture
	Oracle Configurator Developer
	Oracle Configurator engine
	Oracle Configurator schema
	Oracle Configurator Servlet
	Oracle Configurator window
	performance
	Populator
	preselection
	product
	Property
	Property-based Compatibility Rule
	prototype
	PTO
	publication
	publishing
	RDBMS
	reference
	Reference
	Repository
	Requires relation
	resource
	Resource
	reusable component
	reusability
	rules
	runtime
	schema
	server
	servlet
	solution
	SQL
	Statement Rule
	system
	termination message
	Total
	UI
	UI Templates
	Unknown
	unit test
	update
	upgrade
	user
	User Interface
	user interface
	user requirements
	validation
	variable
	verification
	Web
	Workbench
	XML

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

